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RÉSUMÉ

Les infrastructures de transport sont précieuses parce qu’elles touchent une multitude d’aspects
allont de la société et l’économie, à l’environnement. La gestion et l’entretien des in-
frastructures de transport à l’échelle du réseau sont directement associés à la capacité de
surveiller et de prévoir la détérioration de ces infrastructures. L’inspection visuelle est une
approche courante pour la surveillance des infrastructures à l’échelle du réseau, car elle four-
nit une évaluation directe et à grande échelle de l’état de détérioration des structures. L’une
des principales limites des inspections visuelles est que l’évaluation est subjective, et donc
l’incertitude des observations varie selon les inspecteurs. De plus, les incertitudes des ob-
servations peuvent dépendre de l’état de l’élément structurel. Ces facteurs présentent des
défis dans l’interprétation des données d’inspection, ce qui limite la capacité à modéliser la
détérioration ainsi que de quantifier l’amélioration de l’état de santé au éléments suite aux
activités de maintenance. L’objectif de ce travail est d’améliorer l’utilité globale des don-
nées d’inspection visuelle à l’échelle du réseau, pour mieux comprendre le comportement de
dégradation des infrastructures au fil du temps. Ceci est réalisé en développant des méthodes
basées sur les données qui permettent: a) d’estimer l’état de détérioration et la vitesse de
détérioration des infrastructures, b) de quantifier l’incertitude des observations en fonction de
l’état de détérioration de l’élément structurel et de l’inspecteur responsable de l’évaluation, c)
d’exploiter la structure commune attributs des infrastructures pour améliorer la performance
du modèle de dégradation, d) quantification de l’effet des interventions, et e) l’estimation
des états de détérioration globaux pour les ponts et pour le réseau. Les méthodes proposées
dans cette thèse sont vérifiées à l’aide de données synthétiques et validées à partir de données
d’inspection réelles du réseau de ponts au Québec. L’application de ces méthodes a montré
une quantification efficace des incertitudes des inspecteurs ainsi qu’une estimation robuste de
l’état de détérioration et de la vitesse sur la base d’un nombre limité d’observations par élé-
ment structurel. Par ailleurs, les méthodes développées ont également démontré une bonne
performance dans la quantification de l’effet des interventions localement pour chaque élé-
ment structurel, et à l’échelle du réseau. Dans l’ensemble, les méthodes proposées améliorent
la capacité d’interprétation des inspections visuelles, qui fournissent des bases solides pour
la prise de décision à l’échelle du réseau et la planification de la maintenance.
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ABSTRACT

Transportation infrastructures are valuable assets that affect a multitude of aspects, such as
the society, the economy and the environment. Managing and maintaining transportation
infrastructure on a network-scale is directly associated with the capacity to monitor and
forecast the deterioration of these infrastructures. Visual inspection is a common approach
for the network-scale monitoring of infrastructures, as it provides direct and broad evaluation
for the deterioration state of the structure. One of the main limitations of visual inspections
is the evaluations being subjective, and thus the uncertainty of observations vary among
different inspectors. In addition, observation uncertainties are dependent on the structural
element condition. Those factors present challenges in interpreting the inspection data, which
limits the capacity of modelling the deterioration as well as quantifying the improvement in
the health state following maintenance activities. The purpose of this work is to improve the
overall utility of network-scale visual inspection data, to better understand the deterioration
behaviour of infrastructures over time. This is achieved by developing data-driven methods
that allow: a) estimating the deterioration condition and speed of infrastructures, b) quanti-
fying observations uncertainty based on the deterioration state of the structural element and
the inspector responsible for the evaluation, c) exploiting the common structural attributes
of infrastructures to improve the deterioration model performance, d) quantifying the effect
of interventions, ant e) estimating the overall deterioration state for bridges and the entire
network. The methods proposed in this thesis are verified using synthetic data and validated
using real inspection data from the network of bridges in Quebec. The application of these
methods have shown effective quantification of the inspector uncertainty along with robust
estimation for the deterioration condition and speed based on limited number of observations
per structural element. Furthermore, the developed methods have also demonstrated a good
performance in quantifying the effect of interventions locally for each structural element, and
on a network-scale. Altogether, the proposed methods improve the capacity of interpreting
visual inspections, which provide solid foundations for network-scale decision making and
maintenance planing.
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op,t ∈
[25, 100], with their corresponding uncertainty estimates represented by
the error bars, and the shaded area representing the forecast period. . 83

Figure 6.13 Deterioration state analysis for the condition and the speed based on
the deterioration state estimates of the primary categories S3348

1,1:8, with
the interventions at time τ = 2015, the aggregated observations ỹ3348
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CHAPTER 1 Introduction

1.1 Motivation

The levels of serviceability and safety associated with the transportation infrastructures are
often linked with the economical growth of a society [1, 2]. As an asset, transportation in-
frastructure has to be monitored and maintained on a regular basis. Hence, structural health
monitoring (SHM) of bridges has gained an increasing attention from researchers and infras-
tructure managers [3]. Bridge SHM systems encompass many techniques and practices, which
can be categorized into three general schemes [4]. These schemes are: a) sensor-based moni-
toring systems, b) visual inspections, c) combination of visual inspections and sensor-based
monitoring [4]. Each of the aforementioned systems has advantages and disadvantages that
justifies its use. Sensor-based monitoring systems can provide continuous feedback about
specific phenomena or behaviour associated with structural elements. However, the capacity
of turning sensor-based data into useful information for managers currently limits the large-
scale applicability of such systems. On the other hand, visual inspections consists in on-site
inspections performed by teams of inspectors. Visual Inspections have the main advantage
of providing direct information about the health state of a structure. These information
are based on broad structural evaluations that do not target a specific damage or structural
component [4]. As a result, visual inspections have been considered by many infrastructures
owners as the primary option for network-scale monitoring [5–7].
Although visual inspections is a popular monitoring approach, along with many advantages,
this monitoring system suffers from shortages that limit its efficiency. First, visual inspections
are performed by different inspectors over time, so that it is common to have inconsistencies
in the data. These inconsistencies introduce difficulties in differentiating between measure-
ment errors and legitimate changes in a structure’s condition. Second, the frequency of visual
inspections varies among bridges, typically ranging from one inspection per year to one in-
spection every four years. Hence, there is typically few monitoring data available over long
periods of time, which presents difficulties in interpreting this data [4].
The uncertainty and insufficiency of monitoring data lead to difficulties and challenges in de-
veloping accurate structural deterioration models. These models are essential for interpreting
the inspection data and improving its utility in maintenance planning and decision making.
The need for a better decision making systems has been emphasized by a report from Cana-
dian Centre for Policy Alternatives [8], in addition to reports by international organizations,
such as the Organization for Economic Co-operation and Development OECD [9].
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This research project presents new data-driven methods that enhance the interpretability of
network-scale visual inspection data. The outcome of this thesis is a collection of methods
that will help monitoring and maintaining existing transportation infrastructure. These tech-
niques enable tracking the performance of structural elements, forecasting the deterioration
state, assessing the change in deterioration rate, and quantifying the effect of interventions.

1.2 Network-Scale Monitoring of Bridges

Figure 1.1 illustrates the information hierarchy for a transportation network database. The
levels identified in this hierarchy are: the network level, the bridge level and the element
level. The network level defines the transportation network regional properties which include
information about the country, the province and the inspection code used in evaluating the
structures. The bridge level is defined by the set of bridges B = {b1, b2, . . . , bB}, with each
bridge bj described by zj ∈ Z structural attributes. The structural attributes zj include the
geolocations (latitude, longitude), traffic loads (e.g., annual average daily traffic), construc-
tion year and other structure related properties. The last level is the structural elements
level, defined by the set Ej = {Sj1 ∪ · · · ∪ SjSj} = {ej1, ej2, . . . , ejEj}, where a structural element
ejp represents the p-th structural element associated with the m-th structural category Sjm in
the bridge bj. Here, a structural category S refers to the set of structural elements with sim-
ilar characteristics or role in the bridge (e.g., beams). The structural element level contains
information about the element material and type, inspection data, within-bridge location,
and other element-related properties. The inspection data provides information about the
deterioration process, which includes the inspection time t, the inspector Ii from the set of
inspectors I = {I1, I2, . . . , II} responsible for evaluating bridges in B, and the deterioration
condition of the structural element ỹ ∈ [l, u], with l representing the worst possible condition
and u representing the best condition. The symbol (∼) in ỹ is utilized to differentiate be-
tween observations in the bounded space [l, u] and unbounded space R. The inspection data
support the main bulk of the deterioration analysis, nonetheless, other information related to
the bridge can also contribute to the analysis, by identifying deterioration patterns exhibited
within common attributes in the network of bridges.
The information about maintenance and intervention for bridges within B is maintained in
a separate database. This segment of information is defined by R∗ = {R1, . . . ,Rj, . . . ,RBr},
where Rj represents the interventions performed on bridge bj, and Br is the number of
bridges that underwent interventions. Each intervention is defined by Rj = {hj, τj}, with
hj = [hj1 · · · hjr · · · h

j
R]ᵀ is a vector of R intervention categories and τj is the intervention

time. An intervention category hr can be applied to one or multiple structural elements in
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different bridges. In the context of this study, each structural element in the dataset has
underwent a single intervention in the time-window of the available data.

1.3 Research Objectives

This research project aims at developing data-driven methods that are well suited for the
network-scale analyses of inspection and intervention data of transportation infrastructure.
The core objectives of this work are:

− Modelling infrastructures deterioration from network-scale visual inspections while ac-
counting for the subjective nature of these inspections.

− Quantifying the local and the network-scale effects of interventions based on visual
inspections.

− Validating and verifying the proposed methods with real and synthetic datasets.

1.4 Thesis Outline

The content of this thesis is organized as follows: Chapter 2 presents a literature review that
compiles the strengths and limitations of existing methods for modelling the deterioration
behaviour based on visual inspections, in addition to presenting the theoretical foundations
of state-space models (SSM), which is utilized in performing the deterioration analysis in
this thesis. Chapter 3 outlines the formulation of SSM as a deterioration model, along with
describing the main characteristics of visual inspection data. Chapter 4 presents a hybrid
framework that combines SSM with kernel regression (KR), in order to take advantage of
the structural similarity between bridges, and exploit it to improve the deterioration model
performance. Chapter 5 describes a new approach that allows quantifying the effects of
interventions, along with the integration of this approach within the SSM-KR deterioration
model. This is followed by estimating the overall deterioration states for bridges and the
entire network in Chapter 6, which is done using the proposed methods. Finally, Chapter 7
provides the thesis conclusions, existing limitations and future research directions.

1.5 Co-Authored Papers

The majority of the work presented in this thesis has been already published or submitted
for publication. The list of co-authored papers is composed of,
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CHAPTER 2 Literature Review

This chapter presents a brief introduction about network-scale bridge management and its
components, followed by a review for state-of-the-art techniques utilized in modelling infras-
tructure degradation and the effect of interventions. The review identifies the limitations of
existing methods and justifies the thesis’ objectives presented in Chapter 1.

2.1 Bridge Management System (BMS)

Bridge management systems (BMS) are utilized in managing the information and sustaining
the long-term health of bridges network under budgetary constraints [10]. A basic BMS is
composed of modules dealing with data storage, maintenance costs, deterioration models,
optimization and analysis models, and updating functions [10,11]. One of the essential roles
of a BMS is supporting decision making for maintenance and planning. Hence, the success
of a BMS depends on the capacity of interpreting the inspection data and estimating the
future condition of structures [12, 13]. In this thesis, the primary focus will be on methods
utilized in interpreting visual inspection data in order to model the deterioration behaviour
and quantify the effect of maintenance interventions in bridges.

2.2 Network-Scale Monitoring Using Visual Inspections

Visual inspections are hands-on inspections performed on site by teams of inspectors. The
evaluation method in visual inspection is mainly based on visual observation, and in some
cases these observations can be validated by an instrument or tool (e.g., using a hammer to
examine concrete delamination) [7]. Thus, visual inspections are known to be subjective, as
they rely on the experience and judgment of the inspector [64]. An example that provides an
insight about the visual inspection process is shown in Figure 2.1. In this example, Figure
2.1a shows a structural element with a rust stain on the concrete surface, and Figure 2.1b
shows an apparent rusty reinforcement in a structural element. Both cases imply a corrosion
in the reinforcement, and the level of damage severity in both cases is Medium, according
to the standards specified by the Manual of Inspections from MTQ [7]. While the damage
cases appear to be different, however, the reduction of the section in Figure 2.1b is considered
negligible, therefore, it is treated in the same way as the case shown in Figure 2.1a. Further
details about the evaluation method are provided in §3.5.1. The inspector during visual
inspections is required to determine the type and the level of damage severity of each defect,
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in addition to the percentage of the structural element area affected by the damage [7].

(a) Rust stain on a concrete
structural element.

(b) Apparent rusty reinforce-
ment in a structural element,
with negligible reduction in the
reinforcement section.

Figure 2.1 Examples for corrosion of reinforcement in structural elements taken from the
Manual of Inspection [7].

Applying visual inspections on a network-scale denotes that the inspections are performed
on a number of bridges, using the same inspection standards. The frequency of inspections
on each bridge can vary, and is determined based on different factors, such as the age of the
bridge and the annual average of daily traffic (AADT) [7]. Commonly the inspections are
performed on a yearly scale ranging from one inspection every four years up to one inspection
per year. During the network-scale inspections, the inspector may or may not inspect the
same bridge she/he inspected before.

2.3 Modelling Deterioration & Time Series Data

Different methods exist in the literature to describe the deterioration behaviour of structural
elements based on visual inspections [6, 12, 14–19]. The majority of these methods are di-
vided between two approaches: Markov deterioration models and regression-based models.
Nonetheless, Discrete Markov Models (or Markov Process) represents the largest proportion
of the literature in the context of bridge visual inspections [6,14–17]. This section elaborates
on the basic concepts of DMM and regression-based models along with their existing limita-
tions. The last part of this section presents the theoretical foundations of state-space models
(SSM), which is utilized as the primary deterioration framework in this thesis.
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2.3.1 Discrete Markov Model (DMM)

A DMM model describes the time-evolution of stochastic systems in which, the next future
state is only dependent on the present state [20]. The main components of DMM are a set
of system states X = {x1, x2, . . . , xX} and a set of transition probabilities represented by the
transition matrix Z ∈ [0, 1]X×X. A generic transition matrix in DMM can be written as,

Z =

xt+1
1 · · · xt+1

j · · · xt+1
X



p11 · · · p1j · · · p1X xt
1

... . . . ... . . . ... ...

pi1 · · · pij · · · piX xt
i

... . . . ... . . . ... ...

pX1 · · · pXj · · · pXX xt
X

.

Each component pij ∈ [0, 1] in Z represents the conditional probability of transitioning from
state xi at time t to state xj at time t + 1 such that, pij = Pr

(
xt+1
j |xti

)
. In the context of

modeling structural deterioration, each system state represents a qualitative state of deteri-
oration. Figure 2.2 illustrates a deterioration model with four deterioration states: Excellent
(x1), Good (x2), Damaged (x3) and Seriously Damaged (x4). The arrows in the graph rep-
resent the possible transitions across the states associated with the transition probabilities
which collectively form the transition matrix,

Z =

xt+1
1 xt+1

2 xt+1
3 xt+1

4


p11 p12 p13 p14 xt

1

0 p22 p23 p24 xt
2

0 0 p33 p34 xt
3

0 0 0 p44 xt
4

.

The terms under the diagonal in Z are equal to 0 because the deterioration process is mono-
tonic over time (i.e. non-increasing). The time interval between t and t+ 1 is generally
considered as 1 year in the case of visual inspections, therefore, it would be unexpected for
a structural element to skip a deterioration state from time t to time t + 1 [14, 21]. Hence,
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p11 p22 p33 p44

p12

p13

p14

p34

p24

p23

Figure 2.2 Discrete Markov model states with the arrows representing all the possible tran-
sitions in a deterioration model.

the transition matrix can be further simplified into,

Z =

xt+1
1 xt+1

2 xt+1
3 xt+1

4


p11 1− p11 0 0 xt

1

0 p22 1− p22 0 xt
2

0 0 p33 1− p33 xt
3

0 0 0 1 xt
4

. (2.1)

The aforementioned assumption reduces the number of transition probabilities to be es-
timated for the model. Estimating the transition probabilities pij is done based on the
inspection data, and by using the Maximum Likelihood Estimation (MLE) [22], expressed by,

L(p) =
X∑
i,j

Nijlog(pij),

where L(.) is the log-likelihood function and Nij is the number of observed transitions from
state xti to state xt+1

j . Maximizing L(.) is carried out while maintaining the constraint,∑X
j=1 pij = 1. One approach to solve this maximization is by using the Lagrange multiplier

[22], which leads to the estimate,
p̂ij = Nij∑X

j=1 Nij
.

The estimate for pij is further improved using different formulations and methods that adapt
to the context of visual inspections [14, 21, 23–25]. These methods have relied mainly on
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recursively minimizing the difference between the predicted and observed deterioration con-
dition of structural elements [21]. Further extensions to the DMM framework are introduced
in a variety of studies to improve its performance [6, 26, 27]. Zhang et al. [27] modified the
transition matrix into a stochastic transition matrix to incorporate the epistemic uncertainty
in DMM. For that end, an error term ε ∼ Beta(α, β) is added to the diagonal of the transi-
tion matrix Z. Van Erp and Orcesi [26] combined Markov process with nested sampling to
improve parameters estimation and assign confidence bounds on Markov transition matrices.
Soetjipto et al. [6] developed a hybrid approach of Markov-System Dynamic (MSD), which
allows analyzing the interdependence of different facets on the system reliability.
While many studies have adopted Discrete Markov Models, the use of such models is subject
to many limitations. Current DMM models have accommodated some of the epistemic un-
certainty and the aleatory uncertainty in the inspection data [27]; However, the inspectors
uncertainty is typically overlooked. The inspectors uncertainty is regarded in many studies
as one of the main sources of variability in visual inspections due to the subjective nature
of the evaluation [4, 5]. Theoretically, the inspector uncertainty can be estimated in a Hid-
den Markov Model (HMM) [28] with an observation matrix for each inspector. However,
in practice, given the large number of inspectors, estimating an observation matrix for each
inspector is seldom feasible. This is because the amount of data required for the model pa-
rameters estimation is unattainably large, in addition to being computationally expensive.
Another limitation in the DMM models is attributed to the discretization aspect. Relying on
discrete states in representing a naturally continuous physical process can introduce approx-
imation errors. These approximation errors can result in additional flaws in forecasting the
deterioration process [29]. In addition, the speed of deterioration over time can’t be directly
quantified, as quantifying the speed requires representing the deterioration by a continuous
process. The importance of quantifying the speed of deterioration arise from the prospect of
enabling further analysis such as modeling the effect of interventions. Further factors that
add up to the limitations in Markov models are the stationarity of the transition probabilities
and the interpretability which are detailed in the work of Zambon et al. [30]. Recent studies
have addressed the stationarity and discretization issues by using a semi-Markov process
model [18,31,32], nonetheless, this type of Markov models may require having an analytical
deterioration model to enhance its performance [30].

2.3.2 Regression Methods

Another perspective on modeling the deterioration based on visual inspections is by using
regression-based methods [12, 19, 33]. Regression is the task of modeling the relationship
between the system response y and one or more system attributes (or covariates) z. This



11

type of model is described mathematically by, y = g(z). The data utilized in building re-
gression models is defined by pairs of observations and covariates D = {(zi, yi), ∀i = 1 : D},
whereby yi is an observation associated with covariates zi = [z1, z2, . . . , zQ]ᵀi . Various regres-
sion techniques are employed in solving structural health monitoring problems [34]. Within
the confines of visual inspections, Artificial Neural Network (ANN) is the most common ap-
proach [12,19,33].
The use of ANN for modeling structural deterioration through visual inspections data has
been demonstrated in different studies [12, 19]. Huang [19] identified significant structural
attributes through statistical analysis (ANOVA) and utilized ANN model to predict future
deterioration of concrete decks. Lee et al. [12] employed an ANN model to predict deteri-
oration by relying on traffic volumes and population growth around the bridge area. Their
study demonstrated that non-bridge factors (e.g. population growth around the bridge area)
can explain structural deterioration patterns in bridges.
From the literature, it is noted that the application of regression models is generally limited in
comparison with the DMM models. This is mainly attributed to the incompatibility of these
models with the context of visual inspections. For example, in cases where few observations
are available, it becomes challenging for a regression-based model to capture the temporal
dependence in the time-series and provide a reliable prediction [35,36]. In addition, the per-
formance of regression methods is subject to the quality of the selected attributes utilized in
training the model. The quality of a dataset can be measured by: completeness, uniqueness,
timeliness, validity, accuracy and consistency [37]. From a real world standing point, these
requirements are challenging to meet. Further requirements in regression analysis are related
to the generality of the sample or the balanced representation of the system responses. In
the context of structural health monitoring, this means having an equal representation for
structural elements at all deterioration levels. The aforementioned property is challenging
in practice, because the majority of structures are maintained at a good health and rarely
structural elements have a poor condition. The aforementioned shortages related to the data
can significantly impact the model performance, therefore, additional efforts are required to
reduce the effect of these limitations. Finally, training and validating regression-based mod-
els are in most cases offline processes. Hence, at any point in time, when new inspection
data becomes available, it is required to repeat the training and the validation of the model.
Nonetheless, from the survey of regression-based studies, it is perceivable that some of the
structural attributes can convey information about the structural deterioration pattern over
time [19].
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2.3.3 State-Space Models

State-space models (SSM) are well suited for time series data and allow estimating the hidden
states of a system from imperfect observations. The term hidden states refers to the unob-
servable states of the system. A state-space model is composed of two models: an observation
model and a transition model. The formulas describing each model are,

observation model︷ ︸︸ ︷
yt = Cxt + vt, vt : V ∼ N (v;0,Rt)︸ ︷︷ ︸

observation errors

(2.2)

transition model︷ ︸︸ ︷
xt = Axt−1 +wt, wt : W ∼ N (w;0,Qt)︸ ︷︷ ︸

process errors

, (2.3)

where yt represents the observations, C is the observation matrix, xt is the state vector at
time t: xt : X ∼ N (x,µt,Σt), A is the state transition matrix, vt, wt are the observation
and process errors and Rt, Qt represent respectively the observations and transition error co-
variance matrices. Different algorithms for estimating hidden states exist in the literature for
different types of problems [39–41]. In this review, the mathematical formulation of Kalman
Filter (KF), Kalman Smoother (KS), and constrained state estimation are described in de-
tails as this thesis build upon them in developing the proposed network-scale deterioration
framework.

Kalman Filter & Kalman Smoother

The Kalman Filter (KF) is a framework for estimating the hidden states of a linear dynamical
system [42]. The hidden states are estimated in the KF at time t through the prediction step
and the update step. The prediction step is described by,

E[Xt|y1:t−1] ≡ µt|t−1 = Aµt−1|t−1

cov[Xt|y1:t−1] ≡ Σt|t−1 = AΣt−1|t−1A
ᵀ +Qt.

(2.4)

The term E[Xt|y1:t−1] refers to the expected value of the state vector xt at time t given
all the observations y1:t−1 up to time t − 1. If an observation is available at time t, the
expected value and covariance estimates are updated with the observation information using
the update step. The update step relies on the conditional probability for estimating the
posterior expected value and covariance at time t. The equations describing the update step
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are,
f(xt|y1:t) = N (xt;µt|t,Σt|t)

µt|t = µt|t−1 +Kt(yt −Cµt|t−1)

Σt|t = (I −KtC)Σt−1|t−1

Kt = Σt−1|t−1C
ᵀG−1

t

Gt = CΣt−1|t−1C
ᵀ +R,

(2.5)

where µt|t ≡ E[Xt|y1:t] the posterior expected value and Σt|t ≡ cov[Xt|y1:t] the posterior
covariance at time t, conditional to the observations up to time t,Kt is the Kalman gain ma-
trix, I is the identity matrix and Gt is the innovation covariance matrix. The KF algorithm
is expressed in the short form as,

(µt|t,Σt|t,Lt) = Kalman filter(µt−1|t−1,Σt−1|t−1,yt,At,Qt,Ct,Rt), (2.6)

where Lt represent the log-likelihood for observation yt. In addition to KF, the Kalman
smoother (KS) is utilized to improve the KF estimates retrospectively based on information
from the entire time series. The RTS Kalman Smoother [43] equations are defined by,

f(xt|y1:T) = N (xt;µt|T,Σt|T)

µt|T = µt|t + Jt(µt+1|T − µt+1|t)

Σt|T = Σt|t + Jt(Σt+1|T −Σt+1|T)Jᵀ
t

Jt = Σt|tA
ᵀΣ−1

t+1|t.

(2.7)

Constrained State Estimation

In some applications, it is required to constrain the state estimates of the state-space models,
in order to prevent relying on state estimates that are incompatible with the physics of the
problem. Different approaches are described in the literature for imposing constraints in the
KF framework [44,45]. In this study, the PDF truncation method [45] is utilized for handling
the model state constraints. For a state vector xt with an expected value µt|t ∈ Rn×1 and a
coefficient matrix H ∈ R1×n, the hidden state vector is constrained as in,

l ≤Hxt ≤ u, (2.8)

where l and u represent the lower and upper bounds respectively. The first step to apply
the constraints is to transform the state vector xt into a space where the constraints are
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decoupled and only a single component in xt is constrained as,

l̄ ≤ x̄t ≤ ū, (2.9)

where x̄t is the transformed state corresponding to the constrained component in the original
state vector, l̄ and ū are the transformed lower and upper bounds, respectively. Imposing
the constraints in Equation 2.9 can be done by approximating a truncated PDF with an
expected value µ̂t|t and variance σ̂2

t|t estimated using the equitations below,

µ̂t|t = ᾱ

[
exp

(
−l̄2

2

)
− exp

(
−ū2

2

)]
,

σ̂2
t|t = ᾱ

[
exp

(
−l̄2

2

)
(l̄ − 2µ̂t|t)− exp

(
−ū2

2

)
(ū− 2µ̂t|t)

]
+ µ̂2

t|t + 1.

Calculating ᾱ, l̄ and ū is done according to,

l̄ = l − (Hµt|t)√
(HΣt|tHᵀ)

, ū = u− (Hµt|t)√
(HΣt|tHᵀ)

, ᾱ = 1√
π/2

[
erf
(
ū√
2

)
− erf

(
l̄√
2

)] ,
where erf(.) represents the error function. The constrained expected value of the state µt|t
and covariance Σt|t in the original state vector are updated as,

µt|t = TW 1/2Sᵀ [µ̂ 0 . . . 0] + µt|t,

Σt|t = TW 1/2Sᵀdiag([σ̂2 1 . . . 1])SW 1/2T ᵀ.

The matrices T andW are obtained from the Jordan canonical decomposition of Σt|t and the
matrix S is obtained through the Gram-Schmidt orthogonalization [46]. Figure 2.3 illustrates
an example of the PDF truncation method applied on a state vector with two components
x = [xt, ẋt] with −10 < µ̇t|t < 0. In this figure, the original state in Figure 2.3a is constrained
using the PDF truncation, which results in the state shown in Figure 2.3b. In addition, Figure
2.3c illustrates the transformation of the bounds and the approximation of the PDF for this
example. The constraints in the transformed space becomes ū = 0 and l̄ = −2.44 with the
transformed truncated PDF defined by µ̂ = −0.77 and σ̂ = 0.56.
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Figure 2.3 Example of applying the PDF truncation method for a state vector with a single
constraint µ̇t|t < 0.

2.4 Effect of Interventions

In the context of network-scale bridge maintenance, an intervention can be classified into
three categories: preventive maintenance, rehabilitation, and replacement [47,48]. While one
can expect a greater improvement from a rehabilitation compared to a preventive mainte-
nance, it is important to empirically quantify the effect of each intervention strategy on the
condition of structural elements. This is because the network-scale planning of interven-
tions is subject to budgetary constraints that require effective resource allocation [49, 50].
In addition, quantifying the effect of interventions is essential for maintaining the accuracy
of deterioration analyses, as it is likely to have multiple interventions during the lifetime of
structural elements. In order to quantify the effect of interventions, it is required to have in-
formation about the deterioration state of structures before and after applying interventions.
Quantifying the effect of interventions based on visual inspections is traditionally done within
a Discrete Markov Model (DMM) [14, 49, 51–53]. The effect of interventions is addressed by
two metrics: the improvement in the condition, and the time delay in the deterioration [14,53].
These quantities are determined by either relying on the expert judgment [14,54], or through
direct estimation from the inspection data [49, 51, 53]. In either cases, the effect of inter-
vention is characterized by a deterministic value or by three values of minimum, maximum
and mode [54, 55]. These representations are insufficient, as applying the same intervention
on different structural elements may yield different outcomes [56]. In addition, quantifying
the effect of interventions directly from the observations implies disregarding the inspectors
uncertainty which is also the case in DMM deterioration models. Overall, there is currently
a lack of methods where the effect of interventions on structural deterioration is explicitly
quantified.
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2.5 Bridge Deterioration State & Network-Scale Analyses

Performing network-scale analyses such as prioritizing maintenance of bridges under bud-
getary constraints, requires an overall estimate for the deterioration state of each bridge
[50,57–60]. This is done by aggregating the deterioration information of many structural ele-
ments and systems into a single metric s̃jt that allows performing comparisons across bridges.
However, the aggregation comes at the cost of some loss in information [61]. In addition,
there is a large spectrum of roles that bridges can take in the network, which implies that
some bridges have more value to the network than others. For example, some bridges con-
tribute to the traffic resilience of the network, while others contribute more to the resilience
of commercial services. Therefore, it is important to consider different factors when assess-
ing the overall deterioration estimate of bridges [62]. There exists different approaches for
estimating the overall deterioration state of a bridge [57]. The ratio-based method relies
mainly on the ratio of the current deterioration state x̃jt,p to the perfect state ujp of structural
elements [57,63], represented by,

s̃jt =
∑Ej
p (x̃jt,p × cjp)∑Ej
p (ujp × cjp)

× 100,

where s̃jt is the overall estimate of the deterioration state of bridge bj and cjp is the replacement
cost of structural element ejp. The replacement cost in this approach represent the weights
which emphasis the relative importance of the element to the bridge. These weights can be
considered on a linear scale, or nonlinear scale that amplifies weights of elements in a poor
structural condition [63]. The latter is useful in assessing the vulnerability of bridges in case
of extreme events or hazards [57]. One of the limitations in the ratio-based approach is that
it is challenging to estimate the actual replacement cost of elements which induce additional
uncertainties on the overall estimate of the bridge deterioration state [57].
Other approaches for estimating the overall deterioration state of bridges suggest aggregating
the deterioration states of the structural components based on weighted averaging of different
importance factors. Importance factors can be assigned at the element-level to amplify the
criticality of some elements in the bridge (e.g. the extent of damage in an element), or at
the network-level to amplify the importance of some bridges over others (e.g. average annual
daily traffic of a bridge). Determining the weights associated with each importance factors
is a subjective task, that mainly relies on the expert judgement [57, 62]. Therefore, it is
more convenient to assess each factor independently, which can convey information about
the deterioration state of the network without prior hypothesis.
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2.6 Conclusions from the Literature Review

The literature review has covered the main methods employed in modelling the deterioration
of structures using visual inspections data. Specifically, the review examined the discrete
Markov models and some of the regression-based methods. In the context of deterioration
analysis using DMM, the inspectors’ uncertainty is disregarded in the analyses. This is be-
cause incorporating the inspector uncertainty is associated with a significant increase in the
number of model parameters that need to be estimated, which also coincides with the amount
of data required for the estimation process. Furthermore, factoring information from struc-
tural attributes in DMM is challenging and comes at the expense of less data being available
for estimating the transition probabilities. For example, in order to factor the structure’s age,
it is required to discretize the data into subsets of age groups, where each subset is represented
by a set of transition probabilities. Similarly, factoring other structural attributes (i.e. mate-
rial, structure type,. . . , etc.) in a Markov model will result in increasing the number of model
parameters and decreasing the amount of data available for estimating each parameter. This
explains why the majority of studies that use a DMM deterioration model have overlooked the
dependency between the transition matrix and structural attributes. Finally, representing
an intrinsically continuous process with a discrete model can result in approximation flaws,
which eventually weakens the deterioration model predictive capacity and limit the potential
of further deterioration analysis, such as the estimation of the deterioration speed. Consid-
ering the aforementioned limitations of the discrete models, the review has also covered the
theoretical foundations of state-space models, which offers a continuous modelling alterna-
tive to DMM. The next chapters present the sub-components of a framework that relies on
state-space models (SSM) to describe the deterioration behaviour using a kinematic model.
The SSM allows estimating the deterioration speed and effectively quantifying the inspectors
uncertainty. The use of SSM also offers compatibility with regression-based methods, which
allows exploiting the common information among structures for improving the deterioration
model performance. In addition, using SSM enables the stochastic modelling of the effect of
interventions on structural elements as well as on a network-scale.
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CHAPTER 3 Modelling Deterioration Using State-Space Models

3.1 Introduction

This chapter presents a method for modelling the deterioration behaviour of structural ele-
ments based on network-scale visual inspections. The chapter starts with a discussion about
the essential modelling prerequisites associated with visual inspection data in §3.2, followed
by the mathematical formulation of the proposed deterioration model based on state-space
models (SSM) in §3.3. Thereafter, the details and properties of real visual inspections and
synthetic data are presented in §3.5. The synthetic data is utilized to verify the SSM model
performance while the real data is utilized for validation. Numerical analyses and results that
demonstrate the predictive capacity of the proposed SSM deterioration model are shown in
§3.5, and finally a discussion and summary of findings is presented in §3.6. The main con-
tributions in this chapter are:

− A method for quantifying the uncertainty of the inspectors that are performing visual
inspections.

− A method for quantifying inspections uncertainty based on the deterioration state of
the structural element and the inspectors uncertainty.

− A validation and verification of the proposed model with real and synthetic datasets,
respectively.

3.2 Visual Inspections Characteristics

This section presents existing challenges in modelling visual inspection data along with the
proposed solutions that account for these challenges.

3.2.1 Inspectors Uncertainty

Visual inspections are performed by different individuals Ii ∈ I = {I1, I2, . . . , II} over time,
therefore, it is common to observe variability in the recorded data [10,64,65]. This variability
is mainly attributed to the subjective nature of the evaluation. The uncertainty of observa-
tions is commonly quantified in state-space models by estimating a single standard deviation
parameter σV common for all observations such that, for any structural element ejp in bridge
bj, the observation error is defined by a gaussian random variable vjt,p : V ∼ N (v; 0, σ2

V ). In
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order to account for the inspectors uncertainty, each inspector Ii is assigned a standard devi-
ation parameter σV (Ii). The standard deviations σV (Ii) are considered as model parameters
to be estimated from the data as detailed in §3.4. Such formulation allows characterizing
inconsistencies that exist in sequences of observations obtained from different inspectors.

3.2.2 State-Dependant Uncertainty

In addition to considering the observations uncertainty σV (Ii) as a function of the inspec-
tor, it is required to take into account that inspection uncertainty can also be dependant
on the structural element condition [64]. For example, if the structural element ejp ⊂ B is
in a perfect condition (x̃jp = u), then an inspector Ii is less likely to misjudge its condition.
Such hypothesis also holds for structural elements with a poor condition (x̃jp = l). On the
other hand, for structural elements with a partial damage (e.g. x̃jp = l+u

2 ), the possibility
of misjudging the structural element condition becomes higher, due to the subjective nature
of the evaluation. In order to accommodate the aforementioned uncertainty characteristics,
a non-linear space transformation is applied on the data. Space transformation is done by
using a transformation function that maps each point from the original space to a point in
the transformed space (i.e. g : [l, u]→ R).
Applying a proper transformation in this context allows the observation and transition un-
certainty to become a function of the structural element’s deterioration state x̃. In addition,
space transformation can enable constraining the deterioration state estimate x̃ within the
feasible interval of the deterioration condition [l, u]. Acquiring both of the aforementioned
properties is possible by using a step function that has two characteristics: a linear middle
span with 1 : 1 slope ratio (i.e. dx

dx̃
= 1), and non-linear end, for which the first derivative

is known. The proposed transformation function g(.) and its inverse g−1(.) are derived from
the CDF of the Gamma distribution defined by,

F (x;α, β) = 1
βαΓ(α)

∫ x

0
tα−1e

−t
β dt. (3.1)

where Γ(.) is the gamma function and {α, β} are the Gamma distribution parameters. By
assigning the parameter β = 1, the CDF function becomes the incomplete gamma function
[66], which is written as,

F (x, a) = 1
Γ(α)

∫ x

0
tα−1e−tdt. (3.2)
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This function is defined for the domain x ∈ (0,∞]; in order to have a function defined for
x ∈ [−∞,∞], Equation 3.2 is modified into,

x̃ = g−1(x) =


1

Γ(α)
∫ x 1

α

0 tα−1e−tdt, x > u+l
2 ,

x, x = u+l
2 ,

− 1
Γ(α)

∫ x 1
α

0 tα−1e−tdt, x < u+l
2 ,

(3.3)

where x̃ represents the state in the constrained space x̃ ∈ [l, u]. The transformation function
g(.) mapping the state x̃ ∈ [l, u] to x ∈ [−∞,∞] is defined by,

x = g(x̃) =



[
1

Γ(α)
∫ x̃

0 t
α−1e−tdt

]α
, u+l

2 < x̃ ≤ u,

x̃, x̃ = u+l
2 ,

−
[

1
Γ(α)

∫ x̃
0 t

α−1e−tdt
]α
, l ≤ x̃ < u+l

2 ,

(3.4)

where the parameter α is given by: α = 2−n, with n is a positive integer n ∈ Z+. The
role of the parameter n is to control the curvature at the transformation function ends. Fig-
ure 3.1 illustrates the transformation function g(x̃) with different n values. For n = 1, the
transformation function has a low curvature, and as the value for n increases, the curvature
becomes higher. However, for any n, the slope ratio of the middle span remains fixed at 1 : 1.
Moreover, it is noted that for n ≥ 4, the change in the shape of the transformation function
is insignificant, so that n = 5 is roughly equivalent to a linear transformation. Therefore,
the possible values for the parameter n can be limited to n ∈ {1, 2, 3, 4, 5}. Identifying the
parameter n that best suit the problem context is done through the parameter estimation
framework described in §3.4. An example that demonstrates the role of the transformation
function is shown in Figure 3.2. In this figure, two cases for the application of space trans-
formation function g−1(x) on a Normal PDF are examined. The first case is shown in the
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Figure 3.1 Transformation function g(.) with different n values.
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dashed-line PDFs in Figure 3.2a and 3.2b. This example illustrates how the probability con-
tent is adjusted when the expected value of the state in the unbounded space (x ∈ [−∞,∞])
has a value near the lower bound l = 25 of the bounded space (x̃ ∈ [25, 100]). On the other
hand, the second example illustrated by continuous-line PDFs in Figure 3.2a and 3.2b, shows
that when the expected value of the state is near the middle span of g(.), the PDF in the
bounded space reflects subtle differences from the PDF in the unbounded space. In sum-
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Figure 3.2 Examples of state transformation with the proposed transformation function.

mary, the purpose of introducing the transformation function g(.) is to enable the inspections
uncertainty to be dependent on the deterioration state of the structural element and restrict
the estimated deterioration state within the feasible deterioration condition bounds [l, u].

3.2.3 Monotonicity and State Constraints

The uncertainty and insufficiency of the inspection data for each structural element may result
in unrealistic trends in the time series. For example, a set of observations may wrongfully
indicate that an element’s condition is improving over time without interventions being made
on the structure. In order to prevent such a problem, constraints are applied for each time
step. The constraint ensures that the deterioration condition between any consecutive time
steps t and t+ 1 is not improving. This is achieved by constraining the speed to be negative
through the following criterion: µ̇+2σ̇ ≤ 0, where µ̇ and σ̇ are respectively the expected value
and the standard deviation of the speed ẋ. The PDF truncation method [45] is employed if
the aforementioned constraint is violated in the proposed model.
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3.3 Modelling Deterioration Using State-Space Models

The framework proposed for modelling the deterioration process in structural elements is
based on the state-space models theory presented in §2.3.3. The goal of this framework is to
model the deterioration behaviour with a kinematic model [67], that includes the element’s
deterioration condition x, speed ẋ, and acceleration ẍ as defined by,

xt

ẋt

ẍt


︸ ︷︷ ︸
xt

=


1 ∆t ∆t2

2

0 1 ∆t
0 0 1


︸ ︷︷ ︸

A

·


xt−1

ẋt−1

ẍt−1


︸ ︷︷ ︸
xt−1

+


wt

ẇt

ẅt


︸ ︷︷ ︸
wt

, (3.5)

where xt and xt−1 are the state vector at time t and t− 1, A describes the model kinematics
for transitioning from xt−1 to xt and wt is the model-error vector. The kinematic model in
Equation 3.5 is employed to characterize the deterioration behaviour in bridges B. Therefore,
for each structural element ejp ∈ E ⊂ B, the transition model that describes the deterioration
process from time t− 1 to time t is,

xjt,p = Axjt−1,p +wt, (3.6)

where xjt,p is the state vector at time t consisting of the condition xjt,p, the speed of degradation
ẋjt,p and the acceleration ẍjt,p. The expected value of each component in the state vector xjt,p
is represented by µjt,p for the condition, µ̇jt,p for the speed and µ̈jt,p for the acceleration. The
matrixA in the transition model represents the transition matrix and wt : W ∼ N (w; 0,Qt)
represents the model-error vector with the model error covariance [67] Qt defined by,

Qt = σ2
W ×
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The observation model for this SSM is described by,

yjt,p = Cxjt,p + vjt,p, (3.7)

where yjt,p is the observation in the transformed space, C is the observation matrix defined
by C = [1 0 0], and vjt,p : V ∼ N (v; 0, σ2

V (Ii)) is the observation error with σV (Ii) being the
standard deviation of the error associated with the observations of an inspector Ii ∈ I. Figure
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3.3 illustrates the details and the steps of the proposed degradation model for predicting and
forecasting the deterioration behaviour of a single structural element ejp from time t up to
time T. In this context, time T represents the time step associated with the last inspection
point.

Start

bj ∈ B

ejp ∈ bj

ỹj
t,p

yj
t,p = g(ỹj

t,p)

µj
t|T,p,Σ

j
t|T,p

Kalman smootherKalman filter

Log. Likelihood

µ̇+ 2σ̇ > 0

Yes

PDF Truncation

µ̃j
t|T,p, Σ̃

j
t|T,p

End

Figure 3.3 Structural degradation model for predicting and forecasting the deterioration state
of structural element ejp from time t to time T.

The framework starts with the observation ỹjt,p ∈ [l, u] representing the condition of structural
element ejp ∈ E ⊂ B. The observation ỹjt,p is passed in the transformation function g(.)
presented in Equation 3.3 to obtain the transformed state observation yjt,p ∈ R. Following
the transformation step, the observations are ready for the time series analysis through the
Kalman filter and smoother. For any time series data yjt,p, the Kalman filter starts at time
t = 0 with an initial estimate for the state expected value vector µj0,p =

[
µj0,p µ̇

j
0,p µ̈

j
0,p

]ᵀ
and

the covariance matrix Σj
0,p = diag

[
σj0,p σ̇

j
0,p σ̈

j
0,p

]2
. In the covariance matrix, the variance of

the initial speed is described by the function,

(σ̇0)2 = p2
1(u− µ̃1) + p2

2, (3.8)

where p1, p2 are model parameters to be estimated from the inspection data and µ̃1 is the
expected value of the condition at time t = 1. Initially µ̃1 is considered equal to the first
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observation µ̃1 = ỹ1, however, after obtaining the smoothed states, µ̃1 is set equal to the ex-
pected value of the smoothed state µ̃1 = µ̃1|T. The function in Equation 3.8 is chosen based
on the maximum likelihood estimate (MLE) method in the real data and direct experimenta-
tion with synthetic data. This variance model is employed to facilitate the estimation of the
initial speed, given that few observations are available in each time series. Furthermore, the
initial estimate for the expected condition µj0,p is assumed to be equal to the average of the
first three observations, while the initial expected speed and acceleration are considered as
µ̇j0,p = µ̈j0,p = 0. The initial state µj0,p, Σj

0,p is propagated over time using the prediction step
and the update step of the Kalman filter (see §2.3.3). After each update step, the constraint
µ̇jt|t,p + 2σ̇jt|t,p ≤ 0 is examined as described §3.2.3. If the aforementioned constraint is vio-
lated, the PDF truncation method is employed to constrain the estimate of the speed ẋjt|t,p
within the feasible bounds. Following the filtering step, the Kalman smoother is utilized to
refine the state estimates and the initial state at time t = 0. Provided that the number of
observations per structural element is limited, the estimate of the initial state xj0,p can be fur-
ther improved in the parameter estimation framework, which is detailed in the next section.
After the smoothing step, the outputs µjt|T,p, Σj

t|T,p are back-transformed to the original space
µ̃jt|T,p, Σ̃j

t|T,p for interpretation and analysis. This back-transformation step is done using the
inverse transformation function g−1(.) described in Equation 3.3. The next section describes
the unknown model parameters and the estimation method.

3.4 Model Parameter Estimation

The unknown model parameters to be estimated from the inspection data are: the inspec-
tors standard deviations σV (Ii), the standard deviation of the transition model error σW , the
transformation function parameter n and the initial state parameters {σ0, σ̈0, p1, p2}. These
parameters are grouped in the following set:

θ =
{

σV (I1:I)︸ ︷︷ ︸
Inspectors std’s.

,
Process error std.︷︸︸︷

σW , n︸︷︷︸
Transform. Param.

,

Initial state.︷ ︸︸ ︷
σ0, σ̈0, p1, p2

}
. (3.9)

The parameter estimation framework for the parameters θ is based on themaximum likelihood
estimate (MLE) method. The MLE estimate is obtained through maximizing the joint prior
probability of observations while assuming the observations to be conditionally independent
given the state x. Thus, the likelihood for a sequence of observations can be obtained through
the product,

f(y1:T|θ) =
T∏
t=1

f(yt|y1:t−1,θ). (3.10)
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In order to avoid numerical instabilities, the natural logarithm is taken for the likelihood
estimate. Hence, Equation 5.10 becomes the log-likelihood estimate described by,

ln f(y1:T|θ) =
T∑
t=1

ln f(yt|y1:t−1,θ). (3.11)

Because the analysis in the proposed framework are performed on a network-scale, the log-
likelihood estimate is taken for the inspection sequences of all the structural elements ejp ∀j, p
combined. Therefore, the network-scale log-likelihood becomes,

L(θ) =
B∑
j=1

Ej∑
p=1

Tp∑
t=1

ln f(yjt,p|yj1:t−1,p,θ), (3.12)

whereby B is the total number of bridges, Ej is the total number of structural elements in the
j-th bridge and Tp is the total number of observations for the p-th structural element. From
Equation 3.12, in order to identify the set of parameters θ∗ that maximizes the log-likelihood
estimate, the following optimization problem is to be solved,

θ∗ = arg max
θ

L(θ),

subject to: σW , σ0, σ̈0, p1, p2 > 0,

σV (Ii) > 0, ∀Ii ∈ I,

n ∈ {1, 2,3, 4, 5}.

(3.13)

Solving this optimization problem is achieved through an iterative gradient-based optimiza-
tion framework. The steps of the estimation framework are illustrated in the pseudocode
shown in Appendix A [68]. In this framework, the model parameters θ are optimized initially
with the assumption that the standard deviation σV of the observation uncertainty is equal
across all inspectors, σV (I1) = σV (I2) = · · · = σV (II) = σV . Therefore, the initial optimiza-
tion step is performed on the set of parameters θs = {σW , σV , σ0, σ̈0, p1, p2}. This step pro-
vides an initial value for the model parameters along with an initial value for the standard de-
viation associated with each inspector σV (I1:I) = σV . Thereafter, the optimization algorithm
iterates over the σV (Ii) parameters while keeping other model parameters in θ fixed. The
framework keeps iterating over the inspectors parameters σV (Ii) until the improvements in
the objective function L(.) are less than the tolerance threshold ε or the stall limit is met. The
stall limit is a predefined number of iterations where improvements in the objective function
L(.) are less than 5%. Following the convergence of the parameters σV (Ii), the optimization
algorithm revisits the model parameters in the subset θm = {σW , σ0, σ̈0, p1, p2} ⊂ θ. The it-
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erative framework keeps alternating between the σV (Ii) parameters and the parameters in the
subset θm until the global convergence criteria is met. As for the parameter n, since the num-
ber of possible values for n is limited, the full optimization procedure is repeated with different
n values in order to identify the value that maximizes the objective function. In this opti-
mization scheme, the upper and lower bounds for the model parameters are defined as follows:
σW ∈ [10−3, 0.01], σV ∈ [1, 10], σ0 ∈ [1, 10], σ̈0 ∈ [10−3, 0.05], p1 ∈ [0, 0.05], p2 ∈ [0, 0.15].
The aforementioned bounds were obtained from experimentation with real and synthetic in-
spection data in order to ensure the deterioration model is consistent with realistic structural
deterioration curves, especially in cases that have either insufficient data and/or highly noisy
data.

3.5 Case Studies

Evaluating the SSM deterioration model performance is done using synthetic data for verifi-
cation and real data for validation. This section presents the main characteristics of visual
inspection datasets, followed by the deterioration analyses on structural elements from each
dataset.

3.5.1 Visual Inspections and Synthetic Data

In this section, a detailed description of the real visual inspections dataset and the evaluation
method is presented. Thereafter, the characteristics of synthetic data are outlined along with
the equations utilized for generating it.

Visual Inspection Data

The real dataset includes information from a network of approximately B ≈ 10000 structures
B = {b1, b2, . . . , bB}, located in the province of Quebec, Canada. Visual inspections in this
dataset are performed on a yearly basis with dates ranging from late 2007 up to early 2020.
During that time-window, the majority of bridges have been inspected from 3 to 5 times.
Each structural element ejp is evaluated according to a codified procedure [7]. The evalua-
tion method requires the inspectors to break down the health condition into four categories
according to the damage severity. The categories are: A: Nothing to little, B: Medium, C:
Important and D: Very Important. An example of a structural element inspection data at
a given time t is: ya = 80%, yb = 20%, yc = 0%, yd = 0%. In the example, the inspection
data implies that 80% of the structural element area has no damages (category A), while the
remaining 20% of the element area has medium damages (category B). Accordingly, the sum
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of the values under each category (A, B, C, and D) for a single element must be equal to
100% (i.e. ya + yb + yc + yd = 100%), and the evaluation in each category must pertain to
0% ≤ ya, yb, yc, yd ≤ 100%.
Representing the deterioration level using four interdependent metrics increases the complex-
ity of the analysis. This is because of the need to model the deterioration according to each
metric while accounting for the dependency across other metrics. Therefore, data aggrega-
tion is applied to transform the four metrics of any inspection point into a single metric. The
data aggregation method is similar in concept to the expected utility theory approach [69],
where the weights ωi are assigned to each state category. Hence, the aggregation formula for
any inspection data is,

ỹ = ω1ya + ω2yb + ω3yc + ω4yd, (3.14)

whereby ỹ is the aggregated observation representing the inspection data (ya, yb, yc, yd). In
this study, the values proposed for the weights are: ω1 = 1, ω2 = 0.75, ω3 = 0.5, ω4 =
0.25. Employing the aforementioned weights restrain the aggregated measure within the
range ỹ ∈ [25, 100]. Hence, a structural element with (ỹ = 100) corresponds to the state
undamaged (ya = 100%, yb = 0%, yc = 0%, yd = 0%), while a structural element with (ỹ =
25) corresponds to the state Very Important damage (ya = 0%, yb = 0%, yc = 0%, yd = 100%).
All numerical analysis are carried out using the aggregated observation ỹ.

Synthetic Visual Inspection Data

A synthetic dataset is generated to be quantitively and qualitatively representative of the
real inspection database. The total number of structural elements ejp in the synthetic dataset
is E = 10827. The structural elements considered in this analysis are for the element type
beam, with an average service-life of T = 60 years. The health condition of the structural
elements is represented by a continuous numerical value within the range ỹ ∈ [25, 100].
To start generating the synthetic data, the true state of deterioration is generated for each
synthetic structural element ejp through the transition model in Equation 3.6. The true state
of the deterioration has to maintain the qualitative characteristics of a real deterioration,
which is done by examining several criteria. These criteria are obtained through empirical
experiments and analyses with real and synthetic data. The criteria are,

1. Slow deterioration: x T
2
> 0.85× x1.

2. Plateau in the deterioration curve: xT > 0.5× x1.

3. Speed threshold: ẋ1 < 0.01× x1 − 1.3.

4. Acceleration threshold: ẍ1 < 0.001× x1 − 0.13.
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A deterioration curve with any of the above-mentioned conditions is rejected and excluded
from the synthetic database. After generating the true deterioration curves, a set of 194 syn-
thetic inspectors I = {I1, I2, . . . , II=194} is generated. Each synthetic inspector is assumed
to have a zero-mean error with vt : V ∼ N (0, σ2

V (Ii)). The standard deviation σV (Ii) is
generated for each synthetic inspector from a uniform distribution σV (Ii) ∼ U(υ1, υ2). The
parameters considered in this study are υ1 = 1 and υ2 = 6 representing the minimum and
maximum values of a uniform distribution. Thereafter, the observation model described in
Equation 3.7 is utilized to generate an observation sample from the true deterioration state.
Figure 3.4 illustrates the true deterioration curve for a synthetic structural element e623

1 and
the set of synthetic inspections associated with it. The number of observations per synthetic
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Figure 3.4 Sample of synthetic inspections y623
t,1 taken from a true deterioration condition of

synthetic structural element e623
1 using synthetic inspectors Ii.

structural element is determined in accordance with the real dataset, which is 3 to 5 observa-
tions yjt,p per structural element for the majority of structures, while few structures have 6 to
8 observations per structural element. Accommodating this property is done using weighted
sampling, with the weights determined from the real dataset.
The true state and the observations are generated in the transformed space with a transfor-
mation function parameter n = 3. The standard deviation of the process error is assumed to
be σW = 5× 10−3.

3.5.2 SSM Model Verification & Analyses with Synthetic Data

The main goal of performing analysis with synthetic data is to verify the predictive capacity
of the proposed deterioration model with a dataset that is representative of the real dataset.
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The use of synthetic data can also enable verifying the performance of the parameter estima-
tion framework since the model parameters are known in the synthetic case. Estimating the
model parameters based on the synthetic data is done as described in §3.4. The set of model
parameters θ estimated through the parameter estimation framework is shown in Table 3.1,
while Figure 3.5 shows the estimation results of the σV (Ii) parameters.

Table 3.1 Estimated model parameters from synthetic inspection data.

σW σ0 σV σ̈0 p1 p2 n
2.1× 10−3 1.241 3.001 0.0498 0.0421 0.0611 3

Figure 3.5 Scatter plot of inspectors true σV (Ii) vs. estimated σV (Ii) with a dashed line
representing the initial value at the start of the optimization.

In Figure 3.5, the horizontal dashed line corresponds to σV , which is the initial estimate for
all σV (Ii), ∀Ii ∈ I. By considering the alignment among the true and estimated σV (Ii),
the scatter plot in Figure 3.5 confirms that the proposed parameter estimation method is
capable of estimating the standard deviations σV (Ii) associated with the inspectors from
network-scale inspection data.
Following the assessment of the estimated model parameters θ∗, the performance of the de-
terioration model is examined at the structural element-level. Examples that examine the
predictive capacity of the deterioration model for structural elements are shown in Figures
3.6-3.8. These examples demonstrate the deterioration-model performance for different cases,
verified by the true deterioration for the synthetic structural element. The deterioration fore-
cast in the examples is considered for a period of 10 years. The first example shows a low
variability case represented by the set of observations ỹ837

t,1 from the synthetic structural ele-
ment e837

1 . The deterioration model performance in this example is illustrated in Figure 3.6,
where it can be noticed that the model estimates are consistent with the true deterioration
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ỹ837t,1 Inspection

Figure 3.6 Condition deterioration analysis based on the observations ỹ837
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during the prediction phase and stays consistent throughout the total forecast period. The
good performance in this case can be attributed to having inspectors with relatively small
uncertainties along with consistent inspection data. The speed estimates associated with this
case are shown in Figure 3.7a. The speed estimate starts with a low uncertainty when the de-
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Figure 3.7 Deterioration speed estimate for synthetic structural elements, with the shaded
area representing the forecast period.

terioration speed is near zero due to the model constraints, thereafter, the uncertainty grows
larger as the deterioration speed increases. The true deterioration speed nearly overlaps with
the model estimate throughout the forecast period which demonstrates an excellent forecast
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performance.
The second example illustrates the deterioration model performance with a series of inspec-
tions that has high variability. This case is demonstrated by the set of observations y792

t,1 of
synthetic structural element e792

1 . The model performance in forecasting the deterioration
condition is shown in Figure 3.8. The three observations in this time-series came from inspec-
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ỹ792t,1 Inspection
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tors that have high uncertainties. This justifies the deviation of the deterioration model from
the true state in the prediction phase. In addition, this case emphasizes the importance of es-
timating the inspectors uncertainties σV (Ii), given that the model estimate puts more weight
on the data from the inspector I2 because he has a lower uncertainty. The deterioration
speed estimate along with the true speed are shown in Figure 3.7b. The deterioration-speed
estimates, as shown in Figure 3.7b, shows a similar performance to the deterioration con-
dition prediction phase with the true speed being within the ±2σModel interval. It can be
noticed that the poor initial speed estimate is associated with an inferior model performance
in estimating the deterioration condition. This asserts the importance of having a good ini-
tial state estimate for the deterioration model especially in short time-series data.
In order to examine the overall performance of the deterioration model, a dataset of Es = 3250
(≈ 30% of E) structural elements ejp are analyzed. The deterioration forecast is assessed for
a period of 10 years for each structural element ejp ∈ E . The yearly average of the forecast
absolute error in the expected condition µjt|T,p, the expected speed µ̇jt|T,p and the expected
acceleration µ̈jt|T,p are shown in Figure 3.9. In this graph, it can be noticed that the yearly
average of the absolute errors in each category increases over the forecast time except for
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the acceleration; because the condition and the speed are changing monotonically, the errors
can accumulate during the forecast; however, the acceleration is locally constant over time
so that the errors has the possibility to average out. Moreover, the bias in the expected
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Figure 3.9 Absolute average error in forecast time for the expected condition, speed and
acceleration based on the true condition, speed and acceleration respectively, with the 95%
confidence interval (±2σ) for each error.

condition of the forecast is examined with scatter plots generated at different years. The
graphs shown in Figure 3.10 illustrates the true condition x̃jt,p versus the model expected
condition µ̃jt|T,p generated at forecast years {1, 5, 10}. It is noticed from Figure 3.10 that
the deterioration model maintains a good predictive capacity over time for the majority of
structural elements. Furthermore, in analyses with synthetic data, the model has sustained
a good performance for longer periods > 10 year, however, the results obtained from these
analyses are not conclusive. This is because the number of experiments was limited, and the
experiments performed did not take into account the effect of external factors such as the
effect of climate change.
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Figure 3.10 Scatter plot for the model estimate of the condition µ̃jt|T,p vs. the true condition
x̃jt,p at forecast years 1, 5 and 10.

Further analysis includes assessing the confidence interval of the model estimates. Specif-
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ically, the probability of the true deterioration condition being within the 95% confidence
interval (i.e. µ ± 2σ) of the model state estimate. For that end, the probability of the true
state being within the range of µjt|T,p ± 2σx,jt|T,p is computed at each year and for all structural
elements ejp. Figure 3.11 illustrates the aforementioned probability of the model state esti-
mate over the forecast time. In Figure 3.11, the dashed line represents the average probability
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Figure 3.11 The probability of the true condition being within the 95% confidence interval of
the model predicted state for the model with the true parameters (dashed) and the estimated
parameters.

of xjt,p being within µjt|T,p ± 2σjt|T,p for a deterioration model with true parameters (including
the true initial speed and acceleration for each time series) while the solid line represents
the average probability of xjt,p being within µjt|T,p± 2σjt|T,p for a deterioration model with esti-
mated parameters. It can be noticed that the model with the estimated parameters achieves
a probability of ≈ 87% when forecasting one year ahead, while the same model with the true
parameters has a probability of ≈ 98%.

3.5.3 SSM Model Validation & Analyses with Real Data

Following the verification step, the proposed deterioration model is validated using real in-
spection data. The dataset considered in the analyses is the inspection dataset for structural
elements of type Beam taken from bridges B = {b1, b2, . . . , bj}. The total number of structural
elements employed in the estimation is E = 10827 structural elements representing a sample
of 2593 bridges. The majority of the selected structural elements has 3 to 5 inspections per
element, performed by different inspectors (a total of 194 inspectors). In this dataset, the
health condition of the structural elements is represented by a continuous numerical value
within the range ỹ ∈ [25, 100]. It should be noted that the number of structural elements
is obtained after excluding time series data that is identified as excessively noisy or insuffi-
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cient. In this study, an excessively noisy or insufficient time series of a structural element is
identified by:

1. The total number of observations in the time series is less than three.

2. The number of observations that indicate significant improvement yt+∆t−yt > 5 in the
structural element is greater than the number of observations indicating otherwise. ∆t
here refers to the time span between two consecutive observations.

3. The time series has excessively high observation errors |yt+∆t − yt| > 15.

The parameter estimation results for the deterioration model are shown in Table 3.2 except
for the estimated σV (Ii) values which are represented in a histogram shown in Figure 3.12.

Table 3.2 Estimated model parameters from real inspection data.

σW σ0 σV σ̈0 p1 p2 n
5.236× 10−3 1 4.021 0.049 0.045 0.002 4

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

Estimated σV (Ii)

Figure 3.12 Histogram for the estimated σV (Ii) values in the transformed space for real
inspectors (total: 194 inspectors) with a dashed line representing the initial value at the
start of the optimization.

In order to validate the deterioration model performance, different examples for patterns of
inspection data are analyzed. The first example for the real inspection data considers the
model performance in the case where the set of inspections has a low variability. This case is
illustrated with the inspection data shown in Figure 3.13 for structural element e14

1 in bridge
b14. In Figure 3.13, the model estimate has a small uncertainty in the prediction phase. This
is attributed to the structural element e14

1 being in a near perfect condition according to the
inspection data as well as having consistency and low uncertainty in the inspection data. It
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Figure 3.13 Condition deterioration analysis based on observations ỹ14
t,1 ∈ [25, 100] of the real

structural element e14
1 with error bars representing the inspectors estimated uncertainties,

and the shaded area representing the forecast period.

can be noticed that inspector I20 appears to have two different σV (Ii), as shown in the first
and the second inspection points. This is because the uncertainty associated with each obser-
vation is dependent on the structural element deterioration state xjt,p as previously detailed in
§3.2.2. Moreover, the inspection data point at year 2017 (represented by the asterisk symbol)
is a validation point which is not included when estimating the model parameters θ∗ nor the
update step of KF. It can be noticed that the deterioration model forecast is consistent with
this new inspection data. The deterioration speed associated with this condition estimate is
shown in Figure 3.14a. The next example, shown in Figure 3.15, demonstrates the model
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Figure 3.14 Deterioration speed estimate for real structural elements, with the shaded area
representing the forecast period.
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performance in the case where the inspection data display high variability. The deterioration
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Figure 3.15 Condition deterioration analysis based on observations ỹ8233
t,1 ∈ [25, 100] of the real

structural element e8233
1 with error bars representing the inspectors estimated uncertainties,

and the shaded area representing the forecast period.

model in this case maintains a downward deterioration curve while accounting for the in-
spections data according to their respective estimated uncertainties. Moreover, and similarly
to the previous example, the model forecast stays consistent with the new inspection data
point at year 2018. The deterioration speed associated with the condition estimate for e8233

1

is shown in Figure 3.14b.
In order to assess the bias in the deterioration model for the real database, a scatter plot
for the model forecast versus new inspection data points is presented in Figure 3.16a. The
term new inspections refers to observations that were never used in training the deterioration
model. Each point in Figure 3.16a represent a model forecast µ̃t|T versus a new inspection
ỹt at time t for a population of structural elements ejp. The symbol associated with each
point represents the number of years until the new inspection data (observation) has arrived.
For example, in a structural element ejp, a duration of 4 years refers to the time between
two consecutive inspections, in which one of them is the new inspection point. It should be
noted that the model forecast is not required to perfectly match the observations due to the
presence of observations uncertainties. Considering the same scatter plot, the uncertainty
associated with each new observation can be illustrated by the symbol size as shown in Figure
3.16b. In Figure 3.16b, the points with the lowest uncertainty are the closest to the diagonal,
however, for points with the uncertainty σV > 4, the scatter tend to spread away from the
diagonal. Furthermore, it can be noticed that the model does not show any significant sign
of bias toward overestimating or underestimating the deterioration condition. In order to
further assess the bias, a normalized histogram is shown in Figure 3.16c in order to examine
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Figure 3.16 Deterioration condition validation for real structural elements.

the difference between the model forecast and the new observations. The histogram shows
that the normalized bias and dispersion in the deterioration model forecast are compatible
with the PDF of standard Normal distribution. From the analyses above, the deterioration
model have displayed a performance similar to the analyses with the synthetic inspection
data, which validates the conclusions taken from the analyses with the synthetic data.

3.6 Conclusion

This chapter presented a network-scale SSM deterioration model for the visual inspections of a
bridge-network. The model enables quantifying the uncertainty of visual inspections through
estimating the standard deviation associated with each inspector as well as considering the in-
spection uncertainty dependent on the deterioration state. The analyses with synthetic data
have demonstrated a good performance for the model in estimating the uncertainty associ-
ated with each inspector (a total of 194 inspectors). In addition, the deterioration analyses
with the synthetic data have shown a good predictive capacity for the proposed framework.
The assessment considered a forecast period of 10 years for each synthetic structural element.
From the analyses, the probability of the true condition being within the confidence interval
µ±2σ of the model forecast is estimated at 87%. The deterioration model has been also val-
idated with real inspection data. The analyses included validation with inspection data that
were not included at the model parameter estimation phase nor the update step of KF. The
assessment have shown that the model is unbiased towards overestimating or underestimating
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the structural elements condition. Overall, the deterioration analyses have shown that the
proposed framework has a consistent and robust performance with respect to highly noisy
data. Future improvements to the proposed framework can include examining the inspectors
bias, as well as a Bayesian framework for the estimation of the model parameters. Including
the inspector bias can be done through estimating the mean parameter in the observations
error term. Furthermore, the analyses with the deterioration speed and acceleration have
shown that further improvements on the model are required, specifically, improving the ini-
tial state estimate of the speed. This can directly result in improving the overall predictive
capacity on a network-scale. Improving the state estimate of the deterioration speed can
be done by analyzing the relationship between the deterioration speed and the structural
attributes of structures using regression analysis. This is achieved by formulating a hybrid
framework that combines SSM with kernel regression (KR), which is presented in the next
chapter.
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CHAPTER 4 Integrating Structural Attributes in Deterioration Analysis

4.1 Introduction

The SSM deterioration model presented in Chapter 3 relies only on the inspection data and
does not take into account the structural attributes of structures, such as the material, the
location and other structural-related attributes. Structural attributes are important because
they can be used to explain and learn some of structural deterioration patterns across the
network. For example, different regions may impose different external factors (e.g. cold vs.
warm climate), which can affect the deterioration rate, not to mention also that each material
has a unique aging process. Furthermore, the capacity for estimating the deterioration speed
is limited in SSM, which may impact the long-term forecast and in some cases the short-
term forecast if there are not enough inspection data. In this chapter, the aim is to improve
the short and long term forecast of the SSM deterioration model by taking advantage of
the structural similarities across the network of bridges. This is done by deriving a hybrid
framework that combines the SSM deterioration model with a kernel regression model, in
order to incorporate structural attributes in the deterioration analysis.
The layout of this chapter is organized as follows. §4.2 presents a review of kernel regression
(KR) theory. This is followed by the mathematical formulation of a hybrid deterioration
model that combines SSM with KR in §4.3. This section includes also the steps toward
estimating the hidden states and parameters/hyper-parameters associated with SSM-KR.
Thereafter, deterioration analyses with synthetic and real data using SSM-KR model are
presented in §4.4. Finally, §4.5 presents the conclusions obtained from the analyses in this
chapter. The main contributions of this chapter are:

− A framework for modelling the deterioration based on visual inspections and structural
attributes.

− An overall improvement in the estimation for the deterioration speed.

− A verification and validation using synthetic and real datasets respectively.

4.2 Kernel Regression (KR)

Kernel methods are well-known and frequently used for pattern detection and discrimination
problems [70]. Kernel regression relies on a kernel function that provides information about
the similarity between pairs of covariates. In this context, the purpose of employing KR is
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to incorporate information from the structural attributes z in the deterioration analysis of
structural elements. KR is utilized to estimate the initial deterioration speed ẋj0,p associated
with each structural element ejp. This estimation is based on the Nadaraya-Watson model [71],

ẋj0,p = (ajp)ᵀẋz + w0 : W0 ∼ N (w0; 0, σ2
w0), (4.1)

with the vector ajp obtained by,

ajp =
k
(
zj,Zc(m), `

)
∑M
m=1 k

(
zj,Zc(m), `

) , m = 1, . . . , M, (4.2)

where zj is a vector of Q covariates associated with the j-th bridge and Zc is a matrix that
encodes a Q-dimensional grid of reference points. The Q-dimensional grid is obtained from
discretizing the range of each covariate with an equal number of M reference points, such that
Zc = [z1

c . . . z
Q
c ] ∈ RMQ×Q. The function k(.) is a multivariate kernel function k : RQ → R

representing the multiplicative kernel,

k
(
zj,Zc(m), `

)
= k

(
z1
j − z1

c(m)

`1

)
· . . . · k

zQ
j − zQ

c(m)

`Q

 , m = 1, . . . , M. (4.3)

where k(.) is the univariate kernel function and ` = [`1 . . . `Q] represents the kernel length
parameter associated with each covariate. Estimating ` parameters as well as the noise
parameter σw0 can be done using the parameter estimation framework described in §4.3.1.
Figure 4.1 illustrates an example for the relationship between the covariates zj ∈ Z, the
response ẋ0, and the reference points Zc. In this graph, the true relation between the
covariates z1, z2 and the response ẋ0 is illustrated by the surface on top, while the reference
points are represented by a 2D grid, which is defined by z1

c , z2
c and the state ẋz represented

by the expected value µ̇z. Estimating the hidden states ẋz, such that each ẋz matches or
approaches the true response ẋ0 associated with the coordinates z1

c and z2
c is done using the

recursive framework detailed in §4.3.2.
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Figure 4.1 Example of a relation between covariates z1, z2 and true response ẋ0, along with
2D grid defined by MQ = 62 reference points with coordinates of z1

c , z2
c and ẋz represented by

the expected value µ̇z.

4.3 Integrating Structural Attributes in Deterioration Analysis

The full framework for estimating the deterioration state xjt,p over time is illustrated in
Figure 4.2. For any structural element ejp in bridge bj ∈ B, the inspection data ỹjt,p and
the structural attributes zj are considered in the analyses. The structural attributes zj are
utilized in the KR model to obtain an initial estimate for the deterioration speed ẋj0,p, while
the inspection data are transformed from the bounded space ỹjt,p ∈ [l, u] to the unbounded
space yjt,p ∈ R using the transformation function defined in Equation 3.4. Furthermore,
the expected initial deterioration condition is considered as µj0,p = yj1,p with the variance
σj0,p

2 = σ2
0, and the expected initial acceleration is µ̈j0,p = 0 with the variance σ̈j0,p2 = σ̈2

0.
Following the initialization step, the Kalman filter is utilized for propagating the initial state
xj0,p forward in time through the prediction step and the update step up to time T. Similarly,
the Kalman smoother is applied to refine the KF estimates from t = T − 1 to t = 0. At
each time step t in KF and KS, the state estimate is examined with the following constraint
µ̇jt,p + 2σ̇jt,p ≤ 0. The aforementioned constraint ensures the state estimate does not allow
the structural element health to improve over time. If the constraint is violated, the PDF
truncation method described in §2.3.3, is applied. The outcome of the SSM-KR framework is
denoted by µ̃jt|T,p ∈ [l, u] which represents the smoothed expected values for the deterioration
state and Σ̃j

t|T,p representing the smoothed variances at each time step t.

4.3.1 Model Parameters & Estimation Framework

In addition to the SSM model parameters defined in Equation 3.9, the SSM-KR model
parameters include the kernel length parameters ` and the kernel process error σw0 . The
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Figure 4.2 SSM-KR framework for estimating the deterioration state of structural element
ejp from time t to time T.

SSM-KR model parameters are grouped in the set,

θ =
{

σV (I1:I)︸ ︷︷ ︸
Inspectors Std.

,
Process error︷︸︸︷

σW , n︸︷︷︸
Transform. Param.

,

Initial state︷ ︸︸ ︷
σ0, σ̈0, p1, p2, σw0︸︷︷︸

KR process error

,

Kernel length︷︸︸︷
`

}
, (4.4)

where σV (I1:I) refers to the standard deviations associated with each inspector Ii ∈ I,
σw is the kinematic model process noise, n is the transformation function parameter, and
{σ0, σ̈0, p1, p2} are the parameters associated with the covariance of the initial state Σj

0,p =
diag [σ2

0 σ̇
2
0 σ̈

2
0], with σ̇2

0 is defined by a linear function in Equation 3.8.
All model parameters in Equation 4.4 are estimated using the Maximum Likelihood Estimate
(MLE) which is defined by the network-scale log-likelihood described in Equation 3.12. The
parameters estimation procedure is formulated as an optimization problem with the following
constraints,

θ∗ = arg max
θ

L(θ),

subject to: σw, σw0 , σ0, σ̈0, p1, p2, ` > 0,

σV (Ii) > 0, ∀Ii ∈ I,

n ∈ {1, 2, 3, 4, 5}.

(4.5)
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The optimization problem above is solved by using a gradient-based optimization framework
for all parameters θ, which is detailed in §4.3.2. In order to ensure that the deterioration
model is not overfitting, the database is split into a training, validation, and testing sets.
The split of the data is done randomly and bridge-wise such that the structural elements of
one bridge can not exist in the training set and the validation/testing set at the same time.

4.3.2 Recursive Estimation for the Deterioration Speed

The estimation of the hidden states ẋz is done recursively by relying on the Kalman smoother
estimates. At the beginning, ẋz is initialized with an expected value µ̇z=0 and a variance
Σ̇z = diag(4) so that it represents a weakly informative prior. Estimating ẋz is done based
on the structural elements in the training set as in,

Jz = Σ̇zA
ᵀ
κΣ̇−1

0|z,

µ̇z|T = µ̇z + Jz(µ̇0|T − µ̇0|z),

Σ̇z|T = Σ̇z + Jz(Σ̇0|T − Σ̇0|z)Jᵀ
z ,

(4.6)

where Aκ is an array of vectors ajp as in Aκ =
[
a1

1 · · ·ajp
]ᵀ
, µ̇0|z and Σ̇0|z are the expected

value and the covariance matrix for the speed at time t = 0, as predicted by Equation 4.1,
for all structural elements. The expected value vector µ̇0|T and the covariance matrix Σ̇0|T

represent the SSM smoothed estimates for the deterioration speed at time t = 0 and for
all structural elements. At the beginning, the SSM estimation of the deterioration speed is
based on the initial values µ̇j0,p = 0 and σ̇j0,p2 = σ̇2

0. After each update of ẋz, the expected
value µ̇j0,p of the SSM is updated by Equation 4.1 with µ̇j0,p = µ̇j0,p|z, while the KR variance
is reinitialized with Σz = diag(4). The SSM variance σ̇j0,p2 is not updated because the KR
model has a large variance initially which negatively affect the SSM model performance.
The update processes in Equation 4.6 and in the SSM prior are repeated recursively until
the MLE estimate of the validation set is no longer improving. Thereafter, the KR model is
utilized in providing the full prior estimate of the speed ẋj0,p for any structural element ejp.

Parameters & Hidden State Estimation Framework

The gradient optimization algorithm employed in this framework is the Newton-Raphson al-
gorithm, which is similar to the optimization framework presented in §3.4. The estimation
framework starts with optimizing the initial set of model parameters θs = {σw, σV , σx0 , σẍ0 , p1, p2},
where σV is the observation uncertainty parameter common for all inspectors σV (I1:I) = σV .
Following this step, the optimization framework updates the inspectors parameters by itera-
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tively optimizing each parameter σV (Ii), while keeping the rest of model parameters θ fixed.
The convergence for σV (Ii) parameters is determined by either having the difference in L
(validation set) less than the tolerance ε, or if the stall limit is reached. The stall is the
number of iterations with no significant improvements in the objective function. Upon the
convergence of σV (Ii), the model parameters in θm = {σw, σx0 , σẍ0 , p1, p2} ⊂ θ are updated by
the optimization algorithm. Thereafter, the recursive estimation for ẋz is carried out using
the framework presented in §4.3.2. The initial estimation of ẋz is done based on the initial
KR model parameters θκ = {σw0 , `} ⊂ θ. Following the optimization of θκ, the state ẋz is
refined in accordance with the new KR parameters. The estimation procedure for the inspec-
tors’ parameters, the parameters in {θm,θκ} and the state ẋz is repeated recursively until
the global convergence criteria is met. Finally, the parameter n ∈ {1, 2, 3, 4, 5} is identified
by repeating the full optimization procedure for each value of n. The pseudo code which
describe the details of the aforementioned framework is shown Appendix B.

Determining Hyper-Parameters

The number of covariates Q and the number of reference points associated with each covariate
M can affect the computational cost associated with the recursive estimation framework pre-
sented in §4.3.2. This is because increasing Q or M will result in increasing the size of the state
vector ẋz represented by µ̇z|T ∈ RMQ×1 and Σ̇z|T ∈ RMQ×MQ , which consequently increases the
computational demand for computing the KR equations. Determining Q and M is done based
on numerical experimentation using MLE, while taking into account the computational cost.
For example, if two cases M2

Q2 � M1
Q1 , have L2 > L1, where L2 −L1 = η, and η is negligible,

then M1
Q1 is considered in the analysis. Nonetheless, resolving the computational complexity

in cases with large MQ is possible by either utilizing dimensionality reduction approaches,
such as principal components analyses (PCA) [72], or other low rank approximation meth-
ods [73,74], or by using parametric regression methods instead of a non-parametric approach.

4.4 Deterioration Analyses with SSM-KR

This section presents the analyses performed using the SSM-KR framework on synthetic and
real inspection datasets.

4.4.1 Model Verification Using Synthetic Data

The synthetic data used in verifying the SSM-KR model have the same characteristics de-
scribed in §3.5.1. In order to add a synthetic structural attribute to this dataset, it is assumed
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that the true deterioration speed exhibit the following relation with zj,

zj = log(|ẋj0|) + w0 : W0 ∼ N (w0; 0, 0.12). (4.7)

Generating the synthetic attribute zj allows verifying the performance of the recursive es-
timation framework presented in Section 4.3.2. The synthetic training dataset consists in
E = 16500 structural elements with a total of I = 223 inspectors providing the observations
in each time-series. The synthetic structural attribute zj associated with each structural
element is illustrated in the histogram shown in Figure 4.3, where it can be noticed that
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Figure 4.3 Histogram of synthetic structural attribute z.

the distribution of z values has a long tail with the majority of the values concentrated
within the range [−2,−0.5]. Factoring the information from the structural attribute z in
the deterioration analyses is done through the KR model. The kernel function utilized in
this case is the radial basis function (RBF) [75]. The total number of reference points zc is
M = 20, which is also equivalent to the total number of hidden states in ẋz. The estimation
of ẋz in Equation 4.1 is done based on the recursive framework presented in §4.3.2. Figure
4.4 illustrates the initial expected value µ̇z and the updated state ẋz following convergence
after 3 iterations in the recursive framework. In Figure 4.4, it can be noticed that the ẋz
estimates are deviating from the true curve when z < −2. This is because the range of
values z ∈ [−8,−2] is associated with the tail of the distribution (Figure 4.3), where few
or no data is available. An example for the effect of the state ẋz convergence on the KR
model performance is presented in Figure 4.5. In this example, it is shown that after each
ẋz update, the expected value from KR µ̇j0,p is approaching the true speed ẋj0,p.
In order to assess the network-scale improvement in estimating the initial deterioration speed,
a comparison between the error histogram of the SSM-KR model and the SSM model is shown
in Figure 4.6. The errors are determined by the difference between the true initial speed and
the smoothed estimate of the initial speed from each model. From the two histograms in Fig-
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(b) Iteration #2 SSM-KR.
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Figure 4.5 Recursive estimation of the state ẋj0,p illustrated by the probability density function
(PDF) with the true speed represented by the vertical line and the SSM model represented
by a dashed line.

ure 4.6, it is noticed that the new formulation reduces the bias in the initial speed estimate.
The parameter estimation for the SSM-KR model is done using the gradient-based optimiza-
tion framework detailed in §3.4. The estimated model parameters are shown in Figure 4.7
for the inspectors parameters and Table 4.1 for the rest of model parameters. In Figure
4.7, the alignment of the scatter with the diagonal verifies the capacity of the optimization
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model errors histogram (left), with the errors determined by the difference between the true
initial speed and the smoothed estimate of the initial speed.
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Figure 4.7 Estimation results for synthetic inspectors parameters σV (Ii) (total: 223 inspec-
tors) with dashed line referring to the initial estimate for all σV (Ii) parameters.

Table 4.1 Estimation results of model parameters for synthetic data.

σw σx0 σV σẍ0 p1 p2 n σw0 `RBF

3.787× 10−3 1.001 3.001 0.0498 0.0499 0.1488 4 0.1238 0.1933

framework in estimating the inspectors’ parameters, where the dashed line represents the
initial estimate σV for all the inspectors’ parameters σV (Ii).
Examples of time-series analyses using the SSM-KR model are shown in Figures 4.8 and
4.9. In this example, both SSM-KR and SSM (without factoring the structural attribute)
are utilized in producing the deterioration estimates of the condition and the speed. From
Figure 4.8, the condition estimates of SSM-KR and SSM are overlapping initially, however,
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these estimates starts to diverge over time due to the difference in the initial speed estimate
of each model. It can be noticed in this example that the true state represented by a dashed
line is within the confidence interval of the SSM-KR model. The speed estimate associated
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Figure 4.8 Deterioration condition estimate for synthetic structural element e191
1 , with the

circle marker representing the SSM-KR estimates, the square marker representing SSM esti-
mates, the dashed line representing the true condition, and the shaded area representing the
forecast period.

with the aforementioned example is shown in Figure 4.9. It can be noticed that the overall
estimate for the speed in the SSM-KR model is better than the SSM.
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Figure 4.9 Deterioration speed of synthetic structural element e191
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representing the SSM-KR estimates, the square marker representing SSM estimates, the
dashed line representing the true state, and the shaded area representing the forecast period.

In order to examine the network-scale improvements, Figure 4.10 illustrates the average error
in forecast time for the condition and the speed based on the SSM-KR model and the SSM
model. From Figure 4.10a, it can be noticed that the average error in SSM-KR condition
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Figure 4.10 Average error estimate of the SSM-KR model represented by the expected value
(circle marker) and confidence interval (±2σ) for the condition and speed, compared to the
error estimates of the SSM model represented by the expected value (square marker).

estimate is near zero throughout the time-window of analyses, while the average error in SSM
is diverging monotonically away from zero. From this, it can be concluded that factoring
information about the structural attribute has reduced the overall bias in estimating the
deterioration condition. On the other hand, in Figure 4.10b, the speed estimates in both
models are changing monotonically with the SSM model speed estimates diverging similarly
to the SSM condition estimates.

4.4.2 Model Validation Using Real Data

The validation analyses with real data are performed using the real inspection data presented
in §3.5.1. The structural element category utilized in the analysis is Beams. A structural
element is considered in the deterioration analyses if it has 3 or more inspections without
interventions. The total number of beam elements that are considered in the deterioration
analyses is: E = 16689 elements taken from B = 2133 bridges. The number of inspectors
involved in this dataset is I = 223. The inspections dataset is divided into a training set
with Etr = 13639 structural elements from Btr = 1915 bridges, validation set with Ev = 2034
structural elements from Bv = 142 bridges and a testing set having Et = 1016 structural
elements from Bt = 76 bridges.
The structural attributes zj considered in the analyses are: z1

j the structure’s material, z2
j the

age of the structure and z3
j the structure’s location represented by the latitude. The selection

of attributes is based on the kernel bandwidth parameters in `, which are estimated based on
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the inspection data and using the MLE approach [76, 77]. If an estimated kernel bandwidth
` converges to a large value relative to the range of the covariate, then the inverse of ` will
result in the covariate z being almost independent of the response [77]. The histogram for
each of the aforementioned attributes is shown in Figure 4.11. It should be noted that the
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(a) Histogram of material, (1):
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(5): concrete.
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Figure 4.11 Frequency of structural attributes from real data

age of the bridge is determined by deducting the date of the first inspection point from the
construction date of the bridge. The multivariate KR analyses involve different types of
kernel functions. The selection of the kernel function is done based on the type of data (i.e.
categorical or continuous) and the MLE estimate. In this case study, the structure’s material
is assumed to be unordered categorical data, which can be modelled using the Aitchison and
Aitken [78] (AAK) kernel function. The kernel length in the AAK function is bounded by
0 ≤ ` ≤ C−1

C , where C is the number of categories [79]. The structure’s age and latitude
are analyzed using the Matérn 12 (M12) kernel function [77]. In addition to the structural
attributes, the condition of the structural element at the first inspection point is also included
as a covariate in the multivariate KR. The kernel function utilized for the condition is the
Matérn 52 (M52) [77]. The equations for each of the aforementioned kernel functions are
available in Appendix 2. The estimated SSM-KR model parameters are shown in Table 4.2,
while the inspectors parameters are shown in Figure 4.12. In order to demonstrate the
performance of SSM-KR in the real case, two examples are considered from the test set. The
first example is for the structural element e244

10 from bridge b244. This bridge was z2
244 = 61

years of age at the time of the first inspection, located at a latitude z3
244 ≈ 48, with the

material of the beam elements in it is z1
244 = steel.

The deterioration analyses for the structural element e244
10 from b244 are shown in Figures 4.13

and 4.14. Figure 4.13 illustrates a comparison between the condition estimates of SSM-KR
represented by the circle marker and the SSM represented by the square marker. It can be
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Table 4.2 Estimation results of SSM-KR parameters for real data.

σw σx0 σV σẍ0 p1 p2 n

5.451× 10−3 1.025 2.220 0.0499 0.0096 0.1473 4
σw0 `AAK `M12 `M12 `M52

0.1292 0.0166 12.6064 1.4309 7.2166
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Figure 4.12 Histogram for the estimated parameters σV (Ii) of real inspectors (total: 223
inspectors) with the dashed line referring to the initial estimate for all σV (Ii).

noticed that SSM-KR estimates adapt in a better way to the recorded observation compared
to the SSM estimates. Furthermore, the same comparison is performed for the deterioration
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Figure 4.13 Deterioration condition estimate for real structural element e244
10 with the circle

marker representing the SSM-KR estimates, the square marker representing SSM estimates,
and the shaded area representing the forecast period.

speed estimates from each model. From Figure 4.14, throughout the prediction time, the
speed estimates of SSM-KR shows a consistent progression in comparison to the SSM speed
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estimates.
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Figure 4.14 Deterioration speed of structural element e244
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the SSM-KR estimates, the square marker representing SSM estimates, and the shaded area
representing the forecast period.

The second example is taken from a bridge b1599 located at z3
1599 ≈ 46 with z2

1599 = 65
years of age at the time of the first inspection. The structural element e1599

1 material is
z1

1599 = concrete. The inspection data ỹ1599
t,1 exhibit a higher variability compared to the first

example as shown in Figure 4.15. Similarly, the SSM-KR estimates show a better adaption
to the inspection data in comparison with the SSM model estimates. The deterioration speed
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Figure 4.15 Deterioration condition estimate for real structural element e1599
1 with the circle

marker representing the SSM-KR estimates, the square marker representing SSM estimates,
and the shaded area representing the forecast period.

estimates associated with e1599
1 are shown in Figure 4.16. The steady estimates of the speed

in SSM-KR imply a coherent prior estimate, in comparison to the steep changes in the SSM
speed estimates.
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representing the forecast period.

The network-scale improvement in the real case is quantified in Table 4.3, where the log-
likelihood associated with the training, the validation and the testing sets are reported.
From Table 4.3, SSM-KR shows a better log-likelihood in each dataset compared to the SSM
model.

Table 4.3 Comparison between SSM-KR and SSM based on the log-likelihood in the training,
validation and testing sets

Model Training Validation Testing
SSM -121175 -17187 -8822

SSM-KR -116223 -16822 -8482

4.5 Conclusion

In this chapter, a hybrid framework based on state-space models and kernel regression is
proposed for modelling the deterioration behaviour of a bridge network. The SSM-KR model
relies on visual inspection data and takes into account the structural attributes of each bridge.
The role of KR is to model patterns between the deterioration speed and the structural at-
tributes. The performance of SSM-KR is verified with synthetic data and benchmarked
against a SSM model that does not account for structural attributes. The results have shown
that the overall bias in the condition estimates is lower for the SSM-KR, compared to the
SSM, as demonstrated by the average error in the forecast time. In addition, the SSM-KR
does not show any significant bias toward overestimating or underestimating the initial speed.
The analyses also included a validation with real inspections database. Two test cases are
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considered to demonstrate the model performance. In both cases, the SSM-KR showed a
better adaption to the inspection data in comparison with the SSM model. Furthermore,
the SSM-KR deterioration speed estimates have a better consistency throughout the analy-
ses time-window. The SSM and SSM-KR are also compared based on the log-likelihood in
the training, validation, and testing sets. The SSM-KR has an overall better log-likelihood
in each subset of data which emphasizes the importance of factoring structural attributes.
Although SSM-KR has a better performance, the model can be computationally demanding,
when the number of structural attributes is increased Q > 5, the number of reference points in
the KR model becomes significantly large. Nonetheless, overcoming such problem is possible
through dimensionality reduction approaches or by using a parametric regression method in-
stead of the non-parametric regression approach. Overall, factoring structural attributes has
improved the deterioration model predictive capacity, especially when few inspection points
are available. This enables further analyses such as quantifying the effect of interventions
which is tackled in the next chapter.
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CHAPTER 5 Quantifying the Effects of Interventions on Structural Elements

5.1 Introduction

Interventions are an intrinsic part of any structural element service life. In the context of
network-scale bridge maintenance, an intervention can be classified into three categories:
preventive maintenance, rehabilitation and replacement [47, 48]. Quantifying the effect of
interventions is commonly based on either expert judgement and reference values or ad hoc
estimation from visual inspection data [14, 49, 51, 53, 54]. In this chapter the effect of in-
terventions is modelled as random variables within the network-scale deterioration model
SSM-KR. The proposed formulation enables estimating the local effect of interventions at
the structural-element level as well as the network-scale effect for a population of structures.
In addition, the proposed formulation allows accommodating the inspectors uncertainty in
the aforementioned estimates. This allows quantifying the effect of different types of in-
terventions on a network-scale, which lays out the groundwork for enhanced planning and
allocation of maintenance funds.
This chapter is organized as follows. In §5.2 different types of interventions are presented
along with details about the real interventions database and the simulation of synthetic in-
terventions. This is followed by §5.3, which provides the mathematical formulation of the
proposed framework for quantifying the effect of interventions. Analyses and results using
the proposed framework with real and synthetic data are presented in §5.4. Finally, a sum-
mary of findings derived from the results are presented in §5.5. The main contributions in
this chapter are:

− A method for quantifying the effect of interventions while taking into account the
inspectors uncertainty.

− A verification and validation of the proposed model with synthetic and real datasets,
respectively.

− An estimation of the local effect of interventions at the structural-element level as well
as the network-scale effect for a population of structural elements.

5.2 Interventions Database

In this section, the real interventions dataset is presented followed by a description of syn-
thetic interventions generated in order to verify the model performance.
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5.2.1 Interventions in the Real Case Study

In addition to the inspection database described in §3.5.1, a network-scale interventions
database is also available. In this database, the network-scale interventions are classified into
3 categories [7]. These categories are, h1: preventive maintenance, h2: routine maintenance
and h3: repairs. Each of the aforementioned categories encompass a set of actions. For
example, the intervention actions associated with the beam structural elements category are:
cleaning activities in h1, replacing bolts / rivets in h2, and reparation actions of beams in h3.
These intervention actions are triggered based on either a certain deterioration state being
reached or a recommendation from an inspector [7].

5.2.2 Simulating Interventions and Synthetic Data

A synthetic dataset is generated in order to verify the proposed framework performance,
provided that the true effect of interventions is known. This dataset is, by design, similar
to the real data, both quantitatively and qualitatively as described in §3.5.1 and §4.4.1.
Simulating synthetic interventions is done based on two factors: the structure priority, and
the deterioration state. The priority factor is randomly assigned to structures using a uniform
distribution Ω ∼ U(1, 3). This factor emulates the inspector’s recommendation for performing
an intervention in the real case. The type of intervention is determined using a synthetic
decision making system defined by if-then rules, which are detailed in Appendix D. In total,
four synthetic intervention actions are defined, h0: do nothing, h1: preventive maintenance,
h2: repairs and h3: major repairs. Whenever one of the actions h1:3 is applied, the timing of
the synthetic intervention τ is recorded. The true improvement, represented by the network-
scale change in the condition δ, the speed δ̇ and the acceleration δ̈, is defined for each type
of intervention by a Normal distribution with parameters shown in Table 5.1.

Table 5.1 Types of synthetic interventions with their corresponding expected improvement
represented by an expected value and a standard deviation.

Type µδ σδ µδ̇ σδ̇ µδ̈ σδ̈

h1 0 10−4 0.2 0.05 0 10−4

h2 7.5 2 0.3 0.1 0 10−4

h3 18.75 4 0.4 0.15 0 10−4

In order for a structural element to be included in the intervention quantification framework,
it has to have at least 3 observations in total, with one of the observations before or after
the intervention. As for the synthetic structural attributes, a single attribute is considered
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and is defined by the relation,

zj = 10× |ẋj0|+ 4 + w0 : W0 ∼ N (w0; 0, 0.52). (5.1)

Other characteristics and thresholds that are required in order to simulate realistic inspection
data are inherited from the measures defined in §3.5.1.

5.3 Quantifying the Effects of Interventions on Structural Elements

Analyzing the effect of interventions coincides with the deterioration analyses of structural
elements. This is because the type of an intervention hr is determined by a large extent
based on the deterioration state of the structural element. In this section, the relationship
between interventions and deterioration analyses is explained, followed by the formulation of
the proposed framework for quantifying the effect of interventions.

5.3.1 Integrating Interventions within SSM-KR

In this chapter, the deterioration analysis are performed using the SSM-KR deterioration
model detailed in §4.3. In order to accommodate the effect of interventions in the SSM-KR
model, the state vector is augmented to include the following components,

xjp,t =
[
xjp,t ẋ

j
p,t ẍ

j
p,t δt δ̇t δ̈t

]ᵀ
, (5.2)

where xjp,t is the state vector at time t: Xt ∼ N (µt,Σt), composed of the vector [xjp,t ẋjp,t ẍjp,t]
which describes the condition, speed, and acceleration components, and the vector [δt δ̇t δ̈t]
which represents the changes in the condition, speed, and acceleration following an interven-
tion hr. The effect of an intervention on a structural element is quantified within SSM-KR
by modifying the transition model, such that it becomes dependent on the intervention time
τ as in,

xt = Atxt−1 +wt, wt :

W
ki ∼ N (0,Qki

t )

W r ∼ N (0,Qr
t ).

(5.3)

The transition matrix At is defined by,

At=τ =
 Aki I3×3

03×3 I3×3

 , At6=τ =
 Aki 03×3

03×3 I3×3

 , (5.4)
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with I representing the identity matrix and Aki defined by,

Aki =


1 ∆t ∆t2

2

0 1 ∆t
0 0 1

 . (5.5)

The full covariance for the transition model errors is described by the matrix Qt defined as,

Qt=τ =
 Qki +Qr 03×3

03×3 Qr

 , Qt6=τ =
 Qki 03×3

03×3 03×3

 , (5.6)

with Qr and Qki defined as,

Qr = diag
([
σ2
wr σ̇

2
wr σ̈

2
wr

])
, Qki = σ2

w


∆t5
20

∆t4
8

∆t3
6

∆t4
8

∆t3
3

∆t2
2

∆t3
6

∆t2
2 ∆t

 . (5.7)

The standard deviation σw characterizes the kinematic model process noise, while σwr is a
vector containing the standard deviations describing the element-level intervention errors.
Because of the large variability and limited data in each time-series, it is assumed that the
deterioration state of a structural element after an intervention is either staying the same
as it was prior to the intervention or is improving by a positive quantity. Consequently, the
expected deterioration speed at time t = τ is bounded with µ̇τ ∈ [µ̇τ−1, 0] and similarly for
the acceleration, µ̈τ ∈ [µ̈τ−1, 0]. In order to accommodate the aforementioned bounds, the
following state constraints are applied in the KF,

µ̇τ−1 ≤µ̇τ ≤ 0,

µ̈τ−1 − σ̈τ−1 ≤µ̈τ ≤ σ̈τ−1.
(5.8)

The acceleration is allowed to be positive to accommodate cases where the acceleration is
slightly positive or near zero at the time step before the intervention t = τ − 1. This implies
that the deterioration speed was declining at that point in time. In order to ensure the
consistency in the model, the state constraints are also applied in the KS after changing the
bounds as,

µ̇τ ≤µ̇τ+1,

µ̈τ ≤µ̈τ+1 + σ̈τ+1.
(5.9)

The state constraints are only examined at the transition from time t = τ − 1 to time t = τ

or reversely; if one of the constraints is violated, the PDF truncation method is applied.
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5.3.2 State Estimation and Model Parameters

The hidden state δt, δ̇t and δ̈t representing the network-scale effects of interventions are
estimated based on sequential updating from the inspection data. For a given type of inter-
vention hr ∈ R, the expected value for each component is initially set to zero µδt = µδ̈t = 0,
except for the speed µδ̇t . This is because assigning µδ̇t ≈ 0 can trigger the state constraints
defined in Equation 5.8, resulting in truncating the PDF of the state at an early stage.
After the initialization step, the intervention quantification framework presented in §5.3.1
is applied, through which the states δt, δ̇t and δ̈t are updated based on the inspection data
before and after intervention hr on the element ejp. The updated state is then utilized in the
analyses of structural element ejp+1 which allows the states δt, δ̇t and δ̈t to be updated with
another set of inspections before and after intervention hr. The sequential updates are car-
ried out up to the last structural element with the intervention hr. Therefore, the estimation
quality for quantifying the effect of an intervention type depends on the number of structural
elements that underwent the same type of intervention. Following the update from the data
of the last structural element, the updated states δt, δ̇t and δ̈t can be utilized in modelling
the element-level interventions within the SSM-KR framework.
The parameters associated with the intervention quantification framework are defined in the
set θr = {σwr , σ̇wr , σ̈wr , σhr , σ̇hr , σ̈hr}, where σhr , σ̇hr , σ̈hr are the standard deviations associ-
ated with the prior knowledge for the states δt, δ̇t and δ̈t, at the beginning of the sequential
estimation process. The subscript in θr is a reference to the intervention category hr, as
each intervention category has its own set of parameters. The estimation for the aforemen-
tioned parameters is done using theMaximum Likelihood Estimate (MLE). The network-scale
log-likelihood is,

L(θr) =
Br∑
j=1

Ejr∑
p=1

Tp∑
t=1

ln f(yjt,p|yj1:t−1,p,θr), (5.10)

where Br, Ejr are respectively the total number of bridges and structural elements that under-
went intervention hr, and Tp is the number of observation per time series. The parameters
estimation problem is defined as,

θ∗r = arg max
θr

L(θr),

subject to: σwr , σ̇wr , σ̈wr > 0,

σhr , σ̇hr , σ̈hr > 0.

(5.11)

Solving the optimization problem defined above is done using the Newton-Raphson method,
similar to Appendix B.
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5.4 Case Studies

In this section, the performance of the proposed framework is verified using synthetic data
and thereafter validated with real data.

5.4.1 Model Verification Using Synthetic Data

The synthetic dataset is composed of E = 17000 structural elements with a total of Er = 414
structural elements that underwent interventions belonging to categories h1:3. The observa-
tions in the synthetic dataset are obtained from I = 223 inspectors. The structural elements
without interventions are utilized for training the SSM-KR deterioration model. Thereafter,
the pre-trained deterioration model is utilized for modelling interventions as described in
§5.3.1. The optimized model parameters θ1:3 for each intervention category are shown in Ta-
ble 5.2. The state estimation for the network-scale change in the condition δ and the speed

Table 5.2 Estimated model parameters for synthetic interventions.

Intervention σwr σ̇wr σ̈wr σhr σ̇hr σ̈hr

h1 1.42 0.03 0.01 0.26 0.79 0.09
h2 3.10 0.79 0.05 6.77 0.63 0.03
h3 3.82 0.75 0.04 9.82 0.78 0.002

δ̇ are shown in Figure 5.1. In this figure, the expected change in the condition µδ converges
to the true change δ for each intervention category h1:3. Moreover, the state estimations
shows that the proposed framework provides reliable estimates with as little as 20 structural
elements with interventions. On the other hand, the estimates for the network-scale change
in the deterioration speed δ̇ is not as accurate as the condition estimates δ. The limited
performance in estimating δ̇ is noticeable in the case of intervention category h3. The main
reasons for the limited predictive capacity of δ̇ are: the fact that the deterioration speed is
not directly observable, and there are few observations before and/or after the intervention.
As for interventions of type h3, this category of interventions is mainly applied on structures
having an average health condition, which is associated with a higher uncertainty in the esti-
mates of the deterioration state (see §3.2). Nonetheless, if the number of observations before
and/or after the intervention is sufficient, the state estimation of δ̇ converges to the true
value. An example that demonstrates the effect of the number of observations on µδ̇ is shown
in Figure 5.2. In this example, the expected value µδ̇ for the intervention h3 approaches the
true change, as the number of observations per time series increases. Although estimating δ̇
is limited for interventions of type h3, the resulting state δ̇ can be considered as a good initial
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Figure 5.1 Recursive estimation for the network-scale change in the deterioration condition
δ and speed δ̇ based on data from E1 = 139 structural elements underwent intervention h1,
E2 = 141 elements underwent intervention h2, and E3 = 134 elements underwent intervention
h3.
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Figure 5.2 The effect of the number of observations per time series Tp on the state estimate
of δ̇τ under the same intervention h3 at time τ ≈ Tp

2 .

estimate for the effect of interventions at the structural element level. This initial estimate
is subsequently updated according to the data of each structural element using the KS. This
is demonstrated in Figures 5.3-5.5, with examples of time series for synthetic structural ele-
ments. Figure 5.3 illustrates an example of a deterioration behaviour with an intervention h1.
In this example, the true deterioration state before and after the intervention is within the
confidence interval of the model, despite having a single observation before the intervention.
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Another example shown in Figure 5.4, illustrates the model performance in the case of a
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Figure 5.3 Deterioration state analysis for the condition and the speed based on the observa-
tions ỹ184

t,1 ∈ [25, 100] of the synthetic structural element e184
1 with an intervention h1 at time

τ = 2018, error bars representing the inspectors’ uncertainty estimates, and the shaded area
representing the forecast period.

synthetic structural element with an intervention of category h2. In this case, the estimate of
the deterioration state is consistent with the true speed and condition, even though a single
observation exist after the intervention.
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Figure 5.4 Deterioration state analysis for the condition and the speed based on the observa-
tions ỹ53

t,1 ∈ [25, 100] of the synthetic structural element e53
1 with an intervention h2 at time

τ = 2017, error bars representing the inspectors’ uncertainty estimates, and the shaded area
representing the forecast period.

The last example of time series analyses is shown in Figure 5.5, where the model performance
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is examined for a structural element with an intervention of category h3. This example shows
that although the capacity for estimating δ̇ is limited for this intervention category, the pro-
posed framework has yielded an acceptable performance in estimating the deterioration state
as verified by the true state being within the confidence interval of the model estimates.
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Figure 5.5 Deterioration state analysis for the condition and the speed based on the observa-
tions ỹ314

t,1 ∈ [25, 100] of the synthetic structural element e314
1 with an intervention h3 at time

τ = 2015, error bars representing the inspectors’ uncertainty estimates, and the shaded area
representing the forecast period.

In order to examine the capacity of modelling the effects of interventions for the entire popula-
tion of synthetic structural elements, the errors in the state estimates after an intervention are
examined. Table 5.3 shows the expected errors in the deterioration condition E[ε] = µτ |T−xτ ,
and the deterioration speed E[ε̇] = µ̇τ |T − ẋτ , alongside the standard deviations σε, σ̇ε and
the skewness γ and γ̇ for the condition and the speed, respectively.

Table 5.3 The error in the state estimate following an intervention represented by the expected
error ± standard deviation and skewness γ for a sample of 414 synthetic structural elements.

Intervention E[ε]± σε γ E[ε̇]± σ̇ε γ̇

h1 −0.22± 1.62 -0.09 0.04± 0.12 0.38
h2 +0.09± 1.75 -0.34 0.09± 0.13 0.01
h3 −0.54± 2.29 0.05 0.10± 0.15 0.38

The error estimates reported in Table 5.3 show that for a sample of Er = 414 synthetic struc-
tural elements, the distribution of errors is approximately symmetric (i.e. −0.5 < γ < 0.5),
and that the bias in the estimates is insignificant compared to the range of values of which the
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speed and the condition can take. Moreover, it is noticed that the estimated error increases
with major interventions (i.e. h3 vs. h1); this is attributed to the fact that major interven-
tions are applied to structures having an average health condition, which is associated with
an increase in the uncertainty of the deterioration state estimates.

5.4.2 Model Validation Using Real Data

Analyses with real data involves two types of structural element; the front walls and the
beams of different bridges. The first dataset consists in the interventions and inspections
for front walls which is classified as an abutment element [7]. This dataset includes a total
of E = 16360 structural elements taken from B = 8278 bridges. The subset of bridges that
underwent interventions is composed of Br = 193 bridges with Er = 319 front wall structural
elements. The type of interventions involved in the analyses on front walls are categorized
according to the structures’ inspection manual [7]. The first intervention category h2 is com-
posed of activities that relate to strengthening and consolidation. The second intervention
category h3 includes a variety of repair activities, such as the repair of concrete elements
and masonry wall elements. Quantifying the effect of the aforementioned intervention cat-
egories is done using the proposed framework. The estimated model parameters for each
category of interventions are shown in Table 5.4. The recursive state estimation for the ex-

Table 5.4 Estimated model parameters for interventions on the front wall structural elements.

Intervention σwr σ̇wr σ̈wr σhr σ̇hr σ̈hr

h2 6.03 0.05 0.02 5.00 0.27 0.03
h3 9.34 0.05 0.01 9.99 0.31 0.02

pected network-scale improvement in the condition δ and speed δ̇ are shown in Figure 5.6. In
this figure, the network-scale improvement in the condition from applying h2 interventions
is µδ2 = 13.57 with σδ2 = 1.38, compared to µδ3 = 17.56 with σδ3 = 1.28 gained from apply-
ing h3 interventions. Similarly, the deterioration speed improvement for h3 interventions is
µδ̇3 = 0.16 with σδ̇3 = 0.05, which is better than h2 interventions with µδ̇2 = 0.13 and σδ̇2 = 0.06.
Moreover, it can be noticed that the uncertainty of the network-scale estimate for δ and δ̇

is decreasing as the number of structural elements that underwent interventions h2 and h3

increases.
Examples of time series analyses for structural elements that underwent an intervention from
each category are shown in Figures 5.7-5.8. Figure 5.7 shows an example of a front wall
structural element that underwent an intervention of type h2. In this figure, the estimate
of the deterioration condition before the intervention has a lower uncertainty due to the ob-
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Figure 5.6 Recursive estimation for the network-scale change in the deterioration condition
and speed of the front wall structural elements, using data from E2 = 26 elements that
underwent intervention h2, and E3 = 58 elements that underwent intervention h3.
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Figure 5.7 Deterioration state analysis for the condition and the speed based on the obser-
vations ỹ2773

t,1 ∈ [25, 100] of the front wall structural element e2773
1 with an intervention h2 at

time τ = 2016, error bars representing the inspectors’ uncertainty estimates, and the shaded
area representing the forecast period.
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servation from an inspector with a low uncertainty. The second time series example, shown
in Figure 5.8, is for a concrete front wall element that underwent repairs activities from the
intervention category h3. In Figure 5.8 it is noticed that the deterioration speed estimate has
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Figure 5.8 Deterioration state analysis for the condition and the speed based on the obser-
vations ỹ541

t,1 ∈ [25, 100] of the front wall structural element e541
1 with an intervention h3 at

time τ = 2011, error bars representing the inspectors’ uncertainty estimates, and the shaded
area representing the forecast period.

a high uncertainty before the intervention compared to the estimate after the intervention.
This is justified by the fact that a single observation is available before the intervention com-
pared to two observations after; in addition, if the state estimate of the deterioration speed is
near zero (upper bound), this estimate is ensured to be nonpositive using the monotonicity
constraint µ̇jt,p + 2σ̇jt,p ≤ 0, if this constraint is violated, the PDF of the speed is truncated
using the PDF truncation method described in §2.3.3.
The second database consists in the inspections and interventions of beam structural ele-
ments. This dataset includes a total of E = 24824 structural elements from B = 2881 bridges.
The number of bridges that underwent interventions on beams is Br = 95, with Er = 485
beam structural elements. A single intervention category h3 is examined with activities that
includes repair works for concrete and steel beam elements [7]. The estimated model pa-
rameters associated with h3 are reported in Table 5.5. The hidden state estimation for the

Table 5.5 Estimated model parameters for interventions on the beam structural elements.

Intervention σwr σ̇wr σ̈wr σhr σ̇hr σ̈hr

h3 5.68 0.06 0.01 6.75 0.12 0.02
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expected improvement in the condition and the speed are shown in Figure 5.9.
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Figure 5.9 Recursive estimation for the network-scale change in the deterioration condition
and speed based on E3 = 80 beam structural elements that underwent intervention h3.

From this figure, it is noticed that the network-scale expected improvement in the condition
is µδ3 = 12.61 with σδ3 = 0.77, while the improvement in the speed is µδ̇3 = 0.28 with σδ̇3 = 0.06.
An example of beam structural element that underwent repairs of type h3 is shown in Figure
5.10. In this example, the condition and speed state estimates show improvements in the
health state of structural element e520

1 , following the intervention at year τ = 2011.
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Figure 5.10 Deterioration state analysis for the condition and the speed based on the obser-
vations ỹ520

t,1 ∈ [25, 100] of the beam structural element e520
1 with an intervention h3 at time

τ = 2011, error bars representing the inspectors’ uncertainty estimates, and the shaded area
representing the forecast period.



68

5.5 Conclusion

In this chapter, the effect of interventions is quantified as random variable based on visual
inspections. The proposed recursive quantification framework is integrated within the SSM-
KR deterioration model. The performance of the proposed method is verified with synthetic
data that emulates real data with interventions. The verification results demonstrated the
predictive capacity with the true expected improvements being within the confidence inter-
val of the model estimates, for each intervention category. Furthermore, the errors in the
deterioration state estimates following an intervention are reported for a sample of synthetic
structural elements. The error estimates have shown that major repairs have a larger error
after an intervention. This is justified by the fact that the deterioration state estimates have
a larger uncertainty in structures with an average health condition. This limitation can be
mitigated if more observations become available. Furthermore, the proposed framework is
validated with real data that includes two types of structural elements, namely front walls
and beams structural elements. The validation involved estimating the expected improve-
ment following different intervention categories as well as time series analyses for individual
structural elements. The analyses with real data have shown a similar performance in com-
parison with the synthetic data. In summary, the proposed framework enables estimating
the effect of interventions, locally and on network-scale, as random variables. This lays the
ground work for performing probabilistic service-life deterioration analyses, risk analyses,
and interventions planning.
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CHAPTER 6 Network-Scale Deterioration Analyses

6.1 Introduction

In the previous chapters, a framework has been proposed to model the deterioration be-
haviour at the element-level, in addition to an intervention model that accommodates the
effect of interventions on structural elements. These models are sufficient when examining
the elements of a single bridge. However, for a network-scale analysis, decision makers are
interested in identifying the overall deterioration state of bridges and of the network col-
lectively [50, 57–60], so that they can examine the effectiveness of previous interventions on
bridges, as well as the long term trend for the network’s condition. This also lays the foun-
dations for solving problems such as prioritizing interventions on bridges under budgetary
constraints [50,57]. This chapter focuses on the estimation of the overall deterioration states
of bridges as well as for an entire network. In §6.2, the network-scale data is presented, which
includes information about the different types of structural systems as well as intervention
costs and traffic data. The framework proposed for estimating the deterioration states of
individual bridges and of the entire network is presented in §6.3. This is followed by deterio-
ration analyses on a selection of bridges, with and without interventions, along with analyses
on the entire network in §6.4. Finally, §6.5 presents a summary for the analyses and results
obtained in this chapter. The main contributions in this chapter are:

− A method for estimating the overall deterioration states and the effect of interventions
for bridges as well as the entire network.

− An assessment for the effects of interventions performed on the network.

6.2 Network-Scale Data

In this section, structural element groups are presented along with other information relevant
to assessing the overall deterioration state of bridges as well as for the entire network.

6.2.1 Structural Element Groups

In this study, structural elements are divided into two main groups: primary G1 and sec-
ondary G2. The primary group represents structural elements that support or transfer
the vertical loads to other elements or to the ground [7]. This group is represented by
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G1 = {S1,1, . . . ,S1,G1}, and consists in G1 = 45 structural element categories, of which 40 cat-
egories are evaluated through visual inspections. On the other hand, the secondary structural
element group G2 = {S2,1, . . . ,S2,G2} consists in G2 = 44 structural element categories with
29 categories evaluated using visual inspections. Figure 6.1 shows two bar charts for each
structural group with the number of structural elements that are inspected in each category.
The reported numbers correspond to the inspections and interventions data collected from
late 2007 up to the end of 2019.

1 5 10 15 20 25 30 35 40
0

2

4

6

·104

Primary Structural Element Categories

#
St

ru
ct

ur
al

E
le

m
en

ts No Interventions
Interventions

1 5 10 15 20 25 29
0

1

2

3

·104

Secondary Structural Element Categories

#
St

ru
ct

ur
al

E
le

m
en

ts No Interventions
Interventions

Figure 6.1 Primary G1 and secondary G2 structural elements categories without interventions
represented by the light blue colour and with interventions represented by the red colour,
with the categories sorted in a descending order based on the number of elements.

The top three categories in each group are reported in Table 6.1, while the full list of cate-
gories are reported in Appendix F. From the bar chart, it is noticed that there is a variability
in the number of structural elements across the different categories, implying that a normal-
ization is required when evaluating the aggregated deterioration of a bridge. This is to avoid
biasing the aggregated deterioration state towards a single or few structural categories.

Table 6.1 Structural element groups sorted using descending order based on the number of
elements in each category.

Primary G1 Secondary G2

S1,1: Beams S2,1: Safety Barriers (left or right)
S1,2: External Side S2,2: Wing/return walls
S1,3: Bearing Seat S2,3: Wheel Guard
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6.2.2 Bridge-level Data

The data at the bridge-level represent information about the structural attributes associated
with the set of bridges B that contains B ≈ 7000 bridges. The structural attributes include the
annual average of daily traffic (AADT), the annual average of daily truck-traffic (AADTT),
and the length of the bridge. Bridge-level data also include information about the annual
intervention costs associated with each bridge. These information are available only for a
subset Bc ⊂ B, with Bc = 2999 bridges. Figure 6.2 shows the aggregated relative annual costs
associated with interventions on bridges. The relative costs, with respect to the year 2012,
are considered in order to avoid unnecessary disclosure of information.
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Figure 6.2 Relative annual aggregated costs of interventions for the set Bc ⊂ B, with Bc = 2999
bridges, which represent all bridges with reported costs.

From Figure 6.2, intervention costs show variations over time; these variations can be cross-
checked with improvements in the condition, as well as the number of reported interventions.
It must be noted that the reported costs also cover repair works on structural elements that
were not inspected visually, therefore, the conclusions derived with regards to the costs are
limited by the incompleteness of the available data.

6.3 Network-Scale Deterioration Analyses

Estimating the overall deterioration state of a bridge starts from the deterioration estimates
of the structural components ejp that makes up a bridge bj. These analyses are performed
using both the SSM model presented in Chapter 3, and the SSM-KR deterioration model
presented in Chapter 4. Generally, the SSM model is utilized only when the number of
structural elements, or the number of bridges that share the same element category is less
than 100. Otherwise, if a structural category S∗ exist within more than 100 bridges, the
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deterioration states for element e ∈ S∗ are estimated using the SSM-KR model. The next
subsections describe the estimation process of the deterioration states for each bridge as well
as the network, followed by techniques utilized in handling missing data and outliers.

6.3.1 Estimating the Deterioration State of a Bridge

After estimating the deterioration states for each structural element, the deterioration states
of the elements categories Sjm are estimated. This is done to reduce biases resulting from
having more structural elements in a single structural category compared to other categories.
Furthermore, the contribution of a structural element to the deterioration state estimate of a
structural category is assumed to be associated with the quantity of the structural element.
Thus, the deterioration state ojm,t of the structural category Sjm in bridge bj is expressed by,

ojm,t =
Pjm∑
p=1

(
xjp,t ×

djp∑
p d

j
p

)
, (6.1)

where Pjm is the number of structural elements in category Sjm and bridge bj, and djp refers
to the quantity associated with the structural element ejp. The quantity is determined based
on either the dimensions of the structural element or the number of units that make up an
element [7]. Thereafter, estimating the bridge deterioration state sjt is done using a weighted
sum of the structural categories,

sjt =
Sj∑
m=1

(
ojm,t ×

1
Gj

)
, (6.2)

where Gj is the number of structural element categories in bridge bj. Since there are two
groups of structural elements G1 & G2 in each bridge, the deterioration state of each bridge
will be represented by sjt,1 for the primary group G1, and sjt,2 for the secondary group G2.
Figure 6.3 illustrates a breakdown for the structural components of a bridge bj ∈ B, along
with the corresponding deterioration states associated with each component, which has the
same colour code. From Figure 6.3, the deterioration state for each bridge bj is represented
by s̃jt,1 for the primary group G1, and s̃jt,2 for the secondary group G2. The deterioration state
estimates for each group G1:2, are obtained by aggregating the deterioration state estimates
õjm,t of each structural category Sjm. Similarly, the deterioration state estimates for a struc-
tural category Sjm are based on the aggregation of the deterioration states x̃jt,p of structural
elements ejp ∈ Sjm.
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Figure 6.3 Hierarchy of the structural components in bridge bj, with their corresponding
deterioration states, with each level in the hierarchy differentiated using a unique colour.

6.3.2 Estimating the Deterioration State of the Network

Following the estimation of the deterioration state for each bridge, the deterioration state of
the network qt is quantified using a weighted sum of the deterioration states of each bridge.
The weights in this case can be either equal for all bridges (i.e., 1

B), or based on one of the
attributes zj associated with each bridge. For example, determining the weights based on
AADT or AADTT, highlights the overall traffic resilience in the network, such that if the
overall health state of the network is high, then the anticipated disruption in traffic is low,
due to little maintenance being required. Additionally, estimating the weights based on the
length/size of the bridge, can reveal potential costs and disruptions in the connectivity of
the network [50, 57]. From the analysis performed on bridges, it is concluded that there
is no significant differences among the overall estimates of the network’s condition, when
using weights based on each of the aforementioned factors (see Appendix E). Therefore, the
network-scale deterioration analysis in this thesis considers equal weights for all bridges,

qt =
B∑
j=1

(
sj,t ×

1
B

)
. (6.3)

In this thesis, the network’s overall deterioration state is represented by q̃t,1 for the primary
structural elements group G1, and q̃t,2 for the secondary structural elements group G2.
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6.3.3 Deterioration States Aggregation Method

The aggregation of the deterioration states in Equations 6.1-6.3 is done using the Gaussian
mixture. The Gaussian mixture is an approach utilized to estimate the probability density
(PDF) for a weighted sum of J Normally distributed random variables [81], such that,

p(x̂t) =
J∑
j=1

λjN (xjt ;µjt|t,Σ
j
t|t), (6.4)

where J is the total number of components and λj is the mixture weight which pertain to∑J
j=1 λ

j = 1. In the context of analyzing the deterioration of a system composed of multiple
components, the overall deterioration state of the system can be approximated by a single
Normal PDF, provided that the PDFs of the components are within close proximity of each
other [82, 83]. Therefore, the expected value µ̂t|t and covariance Σ̂t|t of the system are,

µ̂t|T =
J∑
j=1

λjµjt|T,

Σ̂t|T =
J∑
j=1

λjΣj
t|T +

J∑
j=1

λj(µjt|T − µ̂t|T)(µjt|T − µ̂t|T)ᵀ.
(6.5)

The covariance Σ̂t|t here is composed of the summation of two terms. The first term represents
the "within components" contribution to the total variance, while the second term represents
the "between components" contribution to the total variance [82].

6.3.4 Missing Data and Outliers

Performing deterioration analysis on a large dataset of elements and structures requires han-
dling missing data and outliers. This is done using different methods and criteria which are
discussed in details in this subsection.

Missing Attributes Data

In the context of this study, missing attributes data can be either 1) missing traffic data or 2)
missing elements quantities. In the case of traffic data, missing information are imputed using
the k-nearest neighbour algorithm (k-NN) [84], where the missing traffic data are estimated
based on the data of k = 5 nearest bridges. On the other hand, if an element’s quantity
djp is missing, the average quantity of elements within the same category is considered for
replacing the missing value.
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Missing Interventions Data

There are three cases for missing interventions data, which are either, 1) the type of inter-
vention hr is missing, 2) the prior estimate for the effect of an intervention hr on structural
category S is unavailable, or 3) the intervention is not reported in the database.
In the first case where the year of intervention τ is known, but the type of intervention hr is
missing, the type of hr is determined using the maximum likelihood estimate (MLE), with
the log-likelihood described by,

Lhr(hr) =
Tp∑
t=1

ln f(yjt,p|yj1:t−1,p, hr,θ), (6.6)

where Lhr is the log-likelihood estimate for applying the effect of intervention δr associated
with intervention type hr.
For the second case when the year of intervention τ and the type of intervention hr are
known, but the effect of this intervention δr is not available, then the average estimate of the
same intervention type hr in other structural categories S is utilized in approximating the
missing values. The Appendix G contains the full list for the estimated network-scale effect
of interventions for different structural categories.
The third case where interventions on bridges are not reported in the database is common
among small bridges, those with low traffic loads, and for specific types of structural elements.
Figure 6.4 shows an example of structural element e2905

1 , which has an improvement in the
condition with no records of interventions. From Figure 6.4, the condition has improved
according to the observations between years t = 2011 and t = 2014. This improvement is
reported by the same inspector I12 who has reported the condition prior to the jump at the
year t = 2011.
The presence of such cases can be handled using one of two options: The first option is
to assume there was no intervention, which ultimately can result into a bias in the model
estimates towards underestimating the condition, as shown in Figure 6.4. The second option
is to assume that an intervention has taken place at the time of a positive jump in the
condition, with a type of intervention determined using Equation 6.6. In order to apply the
second option, it is required to detect patterns of improvement in the inspection data of
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±σ ỹ2905t,1 Inspection
±2σV (Ii)

20
07

20
09

20
11

20
13

20
15

20
17

20
19

20
21

−8

−6

−4

−2

0
·10−1

Time (Year)

D
et

er
io

ra
ti

on
Sp

ee
d

of
e2

90
5

1

˜̇µ2905t|T,1 ±2σ
±σ

Figure 6.4 Deterioration state analysis for the condition and the speed based on the ỹ2905
t,1 ∈

[25, 100] of front-wall element, error bars representing the inspectors’ uncertainty estimates,
and the shaded area representing the forecast period.

structural elements, which is done using the metric,

∆p =
∑
t ∆+

t,p∑
t |∆±t,p|

, ∆±t,p = yt+∆t,p − yt,p,

∆+
t,p =

∆±t,p, ∆±t,p > 0,

0, ∆±t,p ≤ 0,

(6.7)

where ∆p is the ratio between the total positive changes in the condition ∆+
p , to all changes

in the condition ∆±p for structural element ejp, with ∆t being a reference to the time span
between two consecutive observations. The ratio ∆p is always positive and defined only for
structural elements with three or more observations, and at least one observation showing
improvement in the condition. Using the metric defined in Equation 6.7 on the same example
in Figure 6.4, would yield ∆1 = 1. If an intervention is trigged for this case, the changes in
the structural element e2905

1 condition and speed correspond to those shown in Figure 6.5.
From Figure 6.5, the condition estimates of the model appears to be consistent with the
reported observations after triggering the intervention automatically at year τ = 2012. The
network-scale analysis in this thesis are performed for both cases, i.e., using only the avail-
able intervention data, and accounting for the potentially unreported interventions through
triggering interventions automatically.
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Figure 6.5 Deterioration state analysis for the condition and the speed based on the ỹ2905
t,1 ∈

[25, 100] of front-wall element, with an intervention automatically triggered at τ = 2012, error
bars representing the inspectors’ uncertainty estimates, and the shaded area representing the
forecast period.

Handling Outliers

An outlier is a data point significantly different from other observations, which can have a
negative effect on the model performance or can cause numerical instability in the update
step (see §2.3.3). The causes of an outlier are attributed either to 1) an incomplete inter-
ventions database or 2) an erratic entry in the inspections database. In the context of visual
inspections, an outlier is assumed to exist in the time-series if:

1. There is a significant difference between consecutive observations ‖yt+∆t,p − yt,p‖ > 15.

2. There is a significant condition improvement in a short period of time T < 8 years, with
observations, max(yt,p)−min(yt,p) > 15, and ∑T

t=1(yt+∆t,p − yt,p) > 0.

3. The number of observations that indicate significant improvement, yt+∆t − yt > 5 in
the structural element is greater than the number of observations indicating otherwise.
Note that ∆t refers to the time span between two consecutive observations.

If an outlier is detected based on the thresholds above, there are two possible lines of actions.
If the outlier happened at a time t that matches the time τ of other interventions on the same
bridge, then the outlier is classified as an intervention with the type hr determined according
to Equation 6.6. Otherwise, the outlier is considered as an erratic input and is removed
from the time-series. Removing an outlier is done by relying on the standard deviations
σV (Ii) associated with each inspection yjt,p. The timestamp associated with the outlier tjφ is
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determined based on the maximum difference between each inspection yjt,p, and the weighted
average of all inspections ŷ, such that,

tjφ = arg max
t
‖yjt,p − ŷ‖,

ŷ =
Tp∑
t

yjt,p
φt∑
φt
,

(6.8)

where tjφ is the timestamp that corresponds to the outlier observation yjtφ,p, and ŷ is a weighted
average with the weights φt = 1

σV (Ii) . This approach allocates higher weights to more infor-
mative observations, which make inspections with a small σV (Ii) unlikely to be selected for
removal.

6.4 Case Studies

In this section, the capacity to aggregate the deterioration states is first demonstrated for
individual bridges, followed by analyses on the entire network of bridges. It should be noted
that for all examples presented in this chapter, the model forecasts for future deterioration
states are done while assuming that no interventions are performed after the year 2020.

6.4.1 Deterioration Analyses for a Bridge Without Interventions

The first case study is about the bridge b990, which is located in the Greater Montreal area.
The length of the bridge is: z5 = 480.5 m, which serves a traffic load AADT: z6 = 23700, and
AADTT: z7 = 1185. The components that are visually inspected in the bridge are: G1 = 8
elements categories from the primary elements group G1 and G2 = 14 elements categories from
the secondary elements group G2. Figure 6.6 shows a bar graph for the number of elements
in each structural category. The top three categories with most structural elements in each
structural group in bridge b990 are shown in Table 6.2, while the full list of components is
available in Appendix F.

Table 6.2 Structural element categories sorted using descending order based on the number
of elements in bridge b990.

Primary G1 Secondary G2

S1,1: Beams S2,1: Bracing
S1,2: External Sides S2,2: Wheel Guard
S1,3: Bearing pad S2,3: Safety Barriers (left or right)
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Figure 6.6 Primary and secondary structural elements categories in bridge b990.

The primary elements categories has a total of E1
990 = 143 elements, most of which are beam

elements. Analyzing the deterioration of a structural category Sj for the bridge bj requires
modelling the deterioration for each element ejp ∈ Sj. Thereafter, the overall deterioration
state ojm,t of the structural category Sjm can be obtained using the Gaussian mixture ap-
proach described in §6.3.3, where the mixture weights are based on the element quantity djp
such that, λjp = djp∑

p
djp
. An example that illustrates the deterioration behaviour of a primary

structural category is shown in Figure 6.7. In this figure, the overall deterioration condition
õjm,t and speed ˜̇ojm,t are estimated for the external-sides element category S990

1,2 , with ỹ990
op,t rep-

resenting the aggregated observations using the Gaussian mixture for all e990
p ∈ S990

1,2 .
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Figure 6.7 Deterioration state analysis for the condition and the speed based on the dete-
rioration state estimates of external-sides elements e990

1:20, with the aggregated observations
ỹ990
op,t ∈ [25, 100], and their corresponding uncertainty estimates represented by the error bars,
with the shaded area representing the forecast period.

The overall deterioration state estimates s̃j1,t for the primary structural group G990
1 is shown

in Figure 6.8, which summarizes the deterioration state estimates for all primary structural
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elements in b990. These estimates are again obtained using the Gaussian mixture reduction
approach, with mixture weights λj = 1

G1
. Furthermore, ỹ990

gp,t in Figure 6.8, represents the
aggregation of all observations on the primary structural elements.
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Figure 6.8 Deterioration state analysis for the condition and the speed of group G990
1 , based on

the deterioration state estimates of primary categories S990
1,1:8, with the aggregated observations

ỹ990
gp,t ∈ [25, 100], and their corresponding uncertainty estimates represented by the error bars,

with the shaded area representing the forecast period.

The deterioration analyses for a secondary structural category are demonstrated with an ex-
ample case in Figure 6.9. This example illustrates the deterioration condition õjm,t and speed
˜̇ojm,t estimates for the wheel guard element category S990

2,2 , with ỹ990
os,t representing the aggre-

gated observations in the secondary category S990
2,2 . In Figure 6.9, the discrepancy between

the model estimates and the aggregated observations is attributed to the initial deterioration
speed, which is estimated based on the data from this bridge, as well as similar bridges that
have wheel guard elements (see Chapter 4).

The overall deterioration state estimates s̃jt,2 for the secondary structural group G990
2 =

{S990
2,1 , ...,S990

2,14} is shown in Figure 6.10. These estimates are obtained based on the dete-
rioration condition õjm,t and speed ˜̇ojm,t estimates for each secondary category, and mixture
weights λj = 1

G2
. From this figure, ỹ990

gs,t is the aggregated observation for the secondary
structural group G990

2 .
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Figure 6.9 Deterioration state analysis for the condition and the speed based on the de-
terioration state estimates of wheel guard elements e990

1:20, with the aggregated observations
ỹ990
os,t ∈ [25, 100], and their corresponding uncertainty estimates represented by the error bars,
with the shaded area representing the forecast period.
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Figure 6.10 Deterioration state analysis for the condition and the speed of group G990
2 , based

on the deterioration state estimates of secondary categories S990
2,1:16, with the aggregated ob-

servations ỹ990
gs,t ∈ [25, 100], and their corresponding uncertainty estimates represented by the

error bars, with the shaded area representing the forecast period.

The results shown in this section demonstrate the capacity to aggregate the deterioration
states of structural elements in order to obtain the overall deterioration state of the bridge,
which is expressed by the deterioration state estimates for the primary G1, and the secondary
G2 structural elements.
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6.4.2 Deterioration Analyses of Bridge With Interventions

In this case study, the deterioration analyses are performed for the visual inspection data for
the bridge b3348, which is located in the Greater Montreal area, with a length: z5 = 64.5 m,
traffic load AADT: z6 = 53000, and AADTT: z7 = 3710. The interventions database in-
dicates that the bridge has underwent repair works in year τ = 2015, however, the annual
costs database shows that the bridge have had also other interventions with unknown type
earlier in the year τ = 2012. The structural components that are visually inspected include
G1 = 8 element categories from G3348

1 , with E1 = 74 elements and G2 = 15 element categories
from G3348

2 with E2 = 54. The bar graphs for G3348
1 and G3348

2 components are shown in Figure
6.11. In each graph, there are elements without interventions represented by the blue colour,
elements with interventions represented by the red colour, and elements with uncategorized
interventions represented by the orange colour. An uncategorized intervention is determined
when the outlier criteria are met (see §6.3.4), and the outlier has occurred at a time t where
interventions are reported in the database for the bridge.
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Figure 6.11 Primary and secondary structural elements categories of bridge b3348 without
interventions represented by the blue colour, with interventions represented by the red colour,
and with uncategorized interventions in the orange.

The top three categories in each group are reported in Table 6.3, while the full list of cate-
gories is available in Appendix F.

Table 6.3 Structural element categories sorted using descending order based on the number
of elements in bridge b3348.

Primary G1 Secondary G2

S1,1: Beams S2,1: Diaphragms
S1,2: External Sides S2,2: Safety Barriers (left or right)
S1,3: Bearing Pad S2,3: Bracing



83

The deterioration analysis are performed on all the structural elements with visual inspection
data using the SSM-KR deterioration model. An example for the deterioration analysis on
a structural category S3348

1 ∈ G3348
1 is shown in Figure 6.12. This example is for the dete-

rioration analysis of the slab elements category S3348
1,6 based on inspection data from three

concrete slabs. The state estimates for the deterioration condition õjm,t and speed ˜̇ojm,t are
shown in Figure 6.12. From this example, the aggregated observations ỹ3348

op,t , and the model
estimates õ3348

6,t after the intervention appears to be consistent with each other due to the
small variability in the recorded data.
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Figure 6.12 Deterioration state analysis for the condition and the speed based on the deterio-
ration state estimates of concrete slab elements e3348

1:3 , with the interventions at time τ = 2015,
the aggregated observations ỹ3348

op,t ∈ [25, 100], with their corresponding uncertainty estimates
represented by the error bars, and the shaded area representing the forecast period.

The overall state estimates for the primary structural group G3348
1 is shown in Figure 6.13.

In Figure 6.13, the overall improvement due to interventions in the year τ = 2015 is notice-
able in the condition s̃jt,1 and the speed ˜̇sjt,1 state estimates. Moreover, the uncertainty of
the state estimate prior to the intervention is significantly larger than the uncertainty after
the intervention, which implies a large variability between the elements’ deterioration states
before the interventions.
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Figure 6.13 Deterioration state analysis for the condition and the speed based on the de-
terioration state estimates of the primary categories S3348

1,1:8, with the interventions at time
τ = 2015, the aggregated observations ỹ3348

gp,t ∈ [25, 100], with their corresponding uncertainty
estimates represented by the error bars, and the shaded area representing the forecast period.

On the other hand, an example for the deterioration state estimates of S3348
2 ∈ G3348

2 , is
shown in Figure 6.14. This example is for the pavement elements category S3348

2,12 which had
an uncategorized interventions in the year τ = 2015. The type of intervention in this case is
determined based on the MLE criterion described in §6.3.4.
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Figure 6.14 Deterioration state analysis for the condition and the speed based on the deteri-
oration state estimates of pavement elements e3348

1:3 , with the interventions at time τ = 2015,
the aggregated observations ỹ3348

os,t ∈ [25, 100], with their corresponding uncertainty estimates
represented by the error bars, and the shaded area representing the forecast period.
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The overall deterioration state estimates s̃jt,2 for the secondary group G3348
2 is illustrated

in Figure 6.15, which shows two major interventions at years τ1 = 2012 and τ2 = 2015.
The first set of interventions is for the sidewalk elements category S3348

2,11 , while the second
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Figure 6.15 Deterioration state analysis for the condition and the speed based on the deteri-
oration state estimates of the secondary categories S3348

2,1:15, with ỹ3348
gs,t ∈ [25, 100] representing

the aggregation for a subset of observations, with their corresponding uncertainty estimates
represented by the error bars, and the shaded area representing the forecast period.

set of interventions involved more elements categories, which overall resulted in significant
improvement in G3348

2 . Nonetheless, the uncertainty for G3348
2 is noticeably larger than the

primary group G3348
1 in Figure 6.13. This is because there are two structural elements cat-

egories in G3348
2 that were not inspected in year t = 2015 or afterwards, in addition to one

element category not inspected prior to year t = 2015, which led to ỹ3348
gs,t (distinguished with

the violet colour) representing the aggregation for a subset of observations in G3348
2 .

The results in this section demonstrate the capacity to aggregate the deterioration states of
elements with interventions, in order to obtain the overall deterioration states for the bridge
b3348. It is noticeable in this case that the overall deterioration states for G1 and G2 have a
higher uncertainty relative to the previous case in §6.4.1. This is attributed to the uncertainty
associated with the effect of interventions, in addition to not performing post-intervention
inspections for some of the structural elements.

6.4.3 Deterioration State of the Network

After estimating the deterioration state for each bridge bj ∈ B, it becomes feasible to estimate
the overall deterioration state of the network for the primary structural elements group q̃t,1,
and the secondary structural elements group q̃t,2. The main goals in this case study are,
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1. Examine the overall network-scale deterioration state estimates over time.

2. Quantify the effect of interventions performed on the network throughout the time-
window of inspections.

For that end, a set of bridges B is considered in the deterioration analysis. The set B contains
B ≈ 7000 bridges, which collectively represent all bridges in the inspections database. The
inspections time-window for this set is from year t = 2009 to year t = 2019, during which
multiple interventions are performed, which are detailed in §6.4.4.
Estimating the deterioration state for the network is done based on the aggregation of the
deterioration state estimates for all bridge using the Gaussian mixture approach defined in
Equation 6.5, and by using equal weights λj = 1

B . Such an approach considers an equal
contribution for all bridges to the overall state of the network q̃t,1 and q̃t,2. Figures 6.16
and 6.17 show the network’s condition and speed estimates for the primary and secondary
structural elements.
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Figure 6.16 Deterioration state analysis for the network’s condition and speed based on the
average state of the primary structural elements from B ≈ 7000 bridges, with the shaded area
representing the forecast period.

From Figures 6.16 and 6.17, approximately 95% of bridges have a condition µ̃t|T ∈ [74, 100] for
the primary structural elements, and µ̃t|T ∈ [71, 100] for the secondary structural elements,
and overall, the health state for the secondary structural elements is higher than the primary
structural elements. This is attributed to the frequency of interventions for the secondary
structural elements being higher, relative to the primary structural elements (see Figure 6.20
in §6.4.4).
The network’s condition estimates in Figures 6.16 and 6.17, do not fully match the inspection
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Figure 6.17 Deterioration state analysis for the network’s condition and speed based on the
average state of the secondary structural elements from B ≈ 7000 bridges, with the shaded
area representing the forecast period.

data, especially in the case of the secondary group G2. This is attributed to the incomplete-
ness of the database, and having unreported interventions as discussed in §6.3.4. In order to
assess the effect of unreported interventions, the criterion defined in Equation 6.7 is applied
to identify structural elements with improving patterns and automatically trigger an inter-
vention event. In this case, an intervention is triggered automatically if more than 90% of
the changes among the observations indicate improvement in the condition (i.e., ∆p > 0.9)
for any structural element ejp. The deterioration state estimates of the modified framework
are shown in Figures 6.18 and 6.19.
The modified framework shows an overall better association with the trend of the inspection
data, compared to the original framework (Figures 6.16 and 6.17). Therefore, in the case
of relying only on the available interventions database, the network’s condition and speed
estimates presented in Figures 6.16 and 6.17, can be interpreted as a lower bound estimates.
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Figure 6.18 Deterioration state analysis for the network’s condition and speed based on the
average state of the primary structural elements from B ≈ 7000 bridges, with automatically
triggered interventions, and the shaded area representing the forecast period.
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Figure 6.19 Deterioration state analysis for the network’s condition and speed based on the
average state of the secondary structural elements from B ≈ 7000 bridges, with automatically
triggered interventions, and the shaded area representing the forecast period.

Furthermore, it should be taken into consideration that the estimates presented in this sec-
tion are only based on the visually inspected elements, whereas it is possible to have some
structural elements that are not being inspected.
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6.4.4 Network-Scale Effect of Interventions and Investments

The effects of interventions are quantified for each structural category S as part of the
network-scale deterioration analysis. Figure 6.20 illustrates the cumulative ratio for the total
number of elements with interventions Er over the total number of inspected elements E.
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Figure 6.20 Cumulative ratio for the total number of elements with intervention Er to the
total number of visually inspected elements E, in each structural group G1 and G2.

From Figure 6.20, it is noticed that since the year 2009 approximately 6% of the total
number of inspected secondary elements have underwent interventions, compared to 4% of
the primary elements.
The network-scale expected improvement in the condition for each structural category is
reported in Appendix G. These estimates are based on the framework presented in Chapter
5, and the intervention/inspection data available for each structural category S. Based on
the estimates in Appendix G, the overall aggregated expected improvement in the condition
for the primary structural elements G1 and the secondary structural elements G2 are reported
in Table 6.4.

Table 6.4 Aggregated expected improvement in the condition for the primary structural
elements G1 and the secondary structural elements G2.

Structural Group µ̂δ1 ± σ̂δ1 µ̂δ2 ± σ̂δ2 µ̂δ3 ± σ̂δ3
Primary G1 0.8±5.5 10.7±8.3 14.3± 9.4
Secondary G2 17.5±3.8 9.5±6.5 17.9± 5.4

From Table 6.4, the aggregated improvements in the condition associated with the primary
structural elements G1 coincides with the initial assumption that h1 type of interventions have
a minor effect relative to h2 and h3. However, this is not the case for the secondary structural
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elements G2, as h1 interventions show a significant effect on the condition. The reason behind
this discrepancy is that minor interventions for the secondary structural elements are under
reported in the database (see Table G.2), and thus the estimated effect of h1 is based only
on two structural categories, of which in both of them, h1 have a significant effect on the
condition. An example for a reported h1 intervention in the secondary elements G2, is the
asphalt resurfacing for the pavement elements [7]. It should be noted that Table 6.4 is
provided to offer an insight about the overall effect of interventions, but is not necessarily
fully representative, as many types of interventions are under reported (see Appendix G).
In order to assess the relation between interventions and costs, the subset of bridges Bc ⊂ B
with Bc = 2999 bridges, is considered in this assessment. Figure 6.21 shows a comparisons
between the costs, number of interventions and the network-scale expected improvement in
the condition following an intervention. All values in this figure are aggregated for each year,
and the relative values are considered in order to perform the comparisons. From Figure
6.21, it is noticed that the highest costs are associated with years 2009-2012, which also
correspond to the highest network-scale expected improvement in the condition, and some
of the highest number of interventions performed. Nonetheless, intervention costs can vary
among the structural categories, as well as the type of interventions performed, therefore, it
is not a necessity for the number of interventions to be perfectly correlated with the costs.
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6.5 Conclusion

In this chapter, the application of SSM/SSM-KR deterioration model is extended beyond
structural elements to include estimates for the deterioration state of structural systems,
bridges, as well as the entire network of bridges. The hierarchy of systems in each bridge bj
starts with two groups, primary Gj1, and secondary Gj2 at the top, with each group encom-
passing multiple structural categories Sj, and each structural category containing multiple
structural elements ej. Estimating the deterioration state for a structural category Sj is
done based on the deterioration state estimates of the structural elements within it, and by
using a Gaussian mixture with the weights determined based on the quantity associated with
each element ej ∈ Sj. After estimating the deterioration states õjt for all categories within
a bridge, the deterioration states s̃jt for the structural group G are estimated using equal
mixture weights, based on the number of categories in the group. These analysis are followed
by assessing the network’s deterioration state q̃t based on B ≈ 7000 bridges, and by using
equal mixture weights for all bridges. From the analysis, it is found that approximately 95%
of bridges have a condition µ̃t|T ∈ [74, 100] for G1, and µ̃t|T ∈ [71, 100] for G2, and overall
the health state is sustained at a high level. Finally, the spending costs associated with
interventions are analyzed for a subset of bridges. The analysis involved a comparison be-
tween the costs, the improvement in the health state, and the number of interventions. The
comparison results have shown that the highest investments were associated with the highest
expected improvements in the network’s condition but not necessarily the highest number of
interventions at a given year. Such a discrepancy is justifiable because intervention costs can
vary among the structural categories, as well as the type of interventions performed.
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CHAPTER 7 Conclusion

7.1 Thesis Conclusions

The research work presented in this thesis has proposed new methods that improve the
interpretability and utility of network-scale visual inspection data. The following are the
conclusions derived from the analyses in this thesis.

In the context of visual inspections where the data is often sparse and the evaluations are
subjective, the inspectors’ uncertainty have a key role within the deterioration modelling pro-
cess. This has been asserted in theoretical studies, however, empirical studies have neglected
it. In order to account for such limitation and other limitations identified in the literature,
this thesis proposed the use of SSM as a deterioration model. The SSM model relies on kine-
matic model to quantify the deterioration condition and the deterioration speed of structural
elements. The formulation of the SSM accounts for the subjective nature of visual inspections
by estimating the observations error associated with each inspector, and considering the in-
spection uncertainty dependent on the deterioration state. The performance of the proposed
model is verified using synthetic data and validated using real inspection data taken from the
network of bridges in Quebec province. The analyses have shown that the SSM deterioration
model is unbiased towards underestimating or overestimating the structural elements condi-
tion. However, estimating the deterioration speed is found to be challenging, because of the
limited number of observations on the condition, and the fact that the deterioration speed
in not directly observed. In order to improve the capacity of estimating the deterioration
speed, a hybrid framework SSM-KR is proposed. The SSM-KR combines the SSM model
with a kernel regression (KR) approach. The role of KR in this context is exploit the sim-
ilarities among bridges in order to improve the deterioration speed estimates. Comparisons
between SSM-KR and SSM using synthetic data have shown that the SSM-KR deterioration
speed estimates have a better consistency throughout the analyses time-window. Moreover,
comparisons using real data are performed based on the log-likelihood of an independent test
set. The results have shown that SSM-KR has an overall better log-likelihood than SSM
in the independent test set. Using SSM-KR comes at the cost of additional computational
complexity which is discussed in the limitations section.
Another key aspect when modelling the deterioration of structural elements is to quantify and
model the effect of interventions. Quantifying the effect of interventions is commonly based
on either the expert judgement or ad hoc estimation from visual inspection data. In this the-
sis, the effect of interventions is modelled using a stochastic framework which quantifies the
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changes at the structural element-level and on a network-scale. The capacity for quantifying
the effect of interventions is verified using synthetic data. The results have shown that the
true state, before and after an intervention, is within the confidence interval of the model
estimate. In addition, the network-scale estimate for the effect of an intervention is shown
to converge to the true network-scale effect, provided that a sufficient number of structural
elements with the same intervention exist. Furthermore, validation analysis are performed
using real data, of which the results in the real cases have resembled the results obtained in
the synthetic case.
Following the deterioration analysis on structural elements, the methods developed in this
thesis are applied on a network-scale, in order to estimate the deterioration states for each
bridge and the entire network. The analysis involved two groups of structural elements, the
primary group which includes all elements that support or transfer vertical loads to other
elements (e.g., beams), and the secondary group which includes elements involved in the ser-
viceability of the bridge (e.g., pavement). From the analysis, approximately 95% of bridges
have a condition µ̃t|T ∈ [74, 100] for the primary structural elements, and µ̃t|T ∈ [71, 100] for
the secondary structural elements, and overall the health state of the secondary structural
elements is higher than the primary structural elements. Moreover, unreported interventions
are shown to affect the network’s deterioration state estimates which are detailed in the
chapter.

In conclusion, the methods proposed in this thesis have shown the capacity to effectively
quantify the inspectors uncertainties along with robust estimation for the deterioration con-
dition and speed based on limited number of observations per structural element. In addition,
these methods have also shown a good performance in quantifying the effect of interventions
locally for each structural element, and on a network-scale. Overall, the proposed methods
improve the capacity to interpret the network-scale visual inspection data, which provide the
foundations for decision making and maintenance planing.

7.2 Limitations

This section examines the limitations that exist in the proposed deterioration model and
other methods proposed in this thesis. Resolving these limitations can further improve the
scalability and robustness of the proposed approaches.
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7.2.1 State Constraints

In this work, state constraints are utilized in order to reinforce knowledge about the physics
of the problem when no direct observations are available. Hence, the constraints are applied
on the hidden states of the deterioration speed and acceleration only. The method utilized
in applying the state constraints is the PDF truncation method described in §2.3.3. In this
method, when a state violates the constraints, the PDF of this state is truncated and approx-
imated into a new PDF that satisfies the boundaries of the constraints. This approximation
can cause biases in the constrained state estimate, especially in cases when the prior knowl-
edge of the state is poorly defined. One potential solution to overcome this limitation is
by performing a space transformation on the deterioration speed, such that the kinematic
model used in modelling the deterioration is always monotonic. Nonetheless, such a solution
also implies compromising the linearity in the system of equations describing the kinematic
model, therefore, further investigation is required to assess the feasibility of such approach.

7.2.2 Kernel Regression & Structural Attributes

The kernel regression approach is utilized within the SSM-KR deterioration model in or-
der to exploit information about structural attributes in the deterioration analysis. In this
framework, the number of covariates Q and the number of reference points for each covari-
ate M can affect the computational cost associated with the recursive estimation framework
presented in §4.3.2. This is because increasing Q and/or M will result in increasing the size
of the state vector ẋz represented by µ̇z|T ∈ RMQ×1 and Σ̇z|T ∈ RMQ×MQ , which consequently
increases the computational demand for computing the KR equations. Nonetheless, resolving
the computational complexity in cases with large MQ is possible by either utilizing dimension-
ality reduction approaches, such as principal components analyses (PCA) [72], or other low
rank approximation methods [73, 74], or by using parametric regression methods instead of
a non-parametric approach.

7.2.3 Deterioration Speed Estimate Following an Intervention

In the context of deterioration modelling, estimating the deterioration speed is challenging
due to not having direct observations on the speed, and having a limited number of obser-
vations for the deterioration condition. The estimation challenge further increases when an
event, such as an intervention, inflicts uncertain changes on the deterioration state, resulting
in increasing the uncertainty of the speed state estimate following an intervention. Since this
limitation is mainly attributed to the lack of observations, making use of deterioration pat-
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terns associated with structural attributes have the potential of overcoming such limitation
and enhancing the state estimates of the post-intervention speed.

7.2.4 Observations Error Estimate for the Inspectors

In the current framework, there are few hypotheses associated with the observations errors,
which can be considered as limitations in the proposed deterioration model. The first hypoth-
esis is to neglect the presence of the inspector bias such that, µV (Ii) = 0 for all inspectors.
This hypothesis can generally affect the estimation of the inspectors uncertainty σV (Ii). Ac-
counting for this limitation by parameterizing the expected value µV (Ii), will cause doubling
the number of model parameters. The second hypothesis is to consider the inspectors’ µV = 0
and σV (Ii) to be fixed over time (stationary), in addition to the parameters σV (Ii) being esti-
mated using a deterministic point estimate approach, where the uncertainty associated with
each parameter is neglected. One solution with the premise to account for the issues above is
the use of adaptive filters, where the system states and the model parameters are estimated
online together [86,87].

7.3 Future Work

This section presents future research directions, which include potential improvements on the
deterioration framework and other use cases for the tools developed in this thesis.

7.3.1 Supporting the Model with Additional Deterioration Information

The SSM-KR framework mainly relies on information that are common and shared across
the network of bridges. Nonetheless, this framework has the capacity to incorporate supple-
mentary information from analytical deterioration models of individual cases. An example
of such information is the corrosion caused by carbonation/chloride in reinforced concrete
elements [88]. Another example is to incorporate data that relate to climate change in or-
der to improve the long term forecast of the deterioration model. The potential of such an
extension can be demonstrated by a generic formulation for the state vector and the model
matrices to include new components (i.e., change in temperature) as in,

xjp,t =
[
xjp,t x̆

j
p,t

]ᵀ
,

At = blockdiag(At, Ăt),

Rt = blockdiag(Rt, R̆t),

Q
t

= blockdiag(Qt, Q̆t),

(7.1)
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where x̆jp,t represents the hidden states of the new component, Ă the transition matrix of the
new component, R̆ and Q̆ are the observations and transition error covariance matrices of
the new component. The observation matrix C for the modified framework is described by,

C =
 C Cθ

0 C̆

 , (7.2)

where C̆ is the observation matrix of the new component, and Cθ is a vector that includes
regression coefficients which allow modelling the dependence between the deterioration based
on visual inspections and the new component variables. The regression coefficients are addi-
tional model parameters that can be estimated using the MLE approach [89]. It should be
noted that this formulation is general, and real applications may impose additional modelling
challenges and modifications.

7.3.2 Handling Abnormal Observations in Real Time

The methods proposed in this thesis account only for the gradual deterioration in infrastruc-
tures, however, abnormal changes can be also accommodated in the deterioration framework.
An example of abnormal changes, is the sudden deterioration of a structure due to external
effects, such as hazards, extreme events, or a change in the health state due to undocu-
mented interventions. Therefore, it is important to identify abnormal observations in real
time to determine the type of the anomaly and include it in the deterioration model [90,91].
This can help inspectors in knowing that their inspection results are abnormal given previ-
ous inspections, which consequently can prevent erratic inputs in the database, and helps
explaining/labeling abnormal changes in the condition. Following the identification of an
abnormal condition, actions can be taken in the form of further inspections or interventions
on the structure.

7.3.3 Planning Network-Scale Interventions

One of the key reasons for analyzing the deterioration behaviour is to determine the type and
the timing of interventions to be applied, such that the service life of bridges is maximized at
minimal costs. Existing approaches have attempted to formulate the intervention planning
problem based on different factors that relates to the deterioration condition, traffic, expected
improvement and financial costs [92–94]. However, the proposed deterioration model in this
thesis has enabled estimating the deterioration speed, in addition to improving the estimation
of the effect of interventions. These additional factors can increases the efficiency of decision
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making and prioritizing interventions on the network of bridges.
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APPENDIX A PARAMETER ESTIMATION FRAMEWORK FOR SSM
DETERIORATION MODEL

Algorithm 1 Parameter estimation framework (SSM)

Require: : θs0: Initial parameters vector
1: L1 ← −1010 (Initial log-likelihood)
2: ε← 10−3 (Convergence tolerance)
3: ρ1 ← 10, ρ2 ← 10 (Stall limits)
4: ζ1 ← 1, ζ2 ← 1 (Initial stall)
5: ν1 ← 300, ν2 ← 1 (Iteration limit per parameter)
6: θs1 ← NewtonRaphson(L(θs),θs0, ν1)
7: σV (I1:I) = σV , σV ∈ θs1
8: L2 ← L(θs1)
9:

10: for n := 1 to 5 do
11: while |Lj+1 − Lj| ≤ ε or ζ1 ≥ ρ1 do
12: while |Lj+1 − Lj| ≤ ε or ζ2 ≥ ρ2 do
13: Lj ← Lj+1
14: for i := 1 to I do
15: σV (Ii)← NewtonRaphson(L(σV (Ii)), σV (Ii0), ν2)
16: Lj+1 ← L(σV (I1:I))
17: if |(Lj+1 − Lj)/Lj| ≤ 0.05 then
18: ζ2 = ζ2 + 1
19: θmj+1 ← NewtonRaphson(L(θm),θmj , ν1)
20: Lj ← L(θmj+1)
21: ζ1 = ζ1 + 1
22: return θmj+1 and σV (I1:I) (Resulting parameters)
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APPENDIX B PARAMETER ESTIMATION FRAMEWORK FOR
SSM-KR DETERIORATION MODEL

Algorithm 2 Parameter estimation framework for SSM-KR

Require: θs0: Initial SSM parameters
Require: θ0, ẋz: Initial KR parameters and state respectively
1: L1 ← −1010 (Initial log-likelihood), ε← 10−3 (Convergence tolerance)
2: ρ1 ← 10, ρ2 ← 10 (Stall limits)
3: ζ1 ← 1, ζ2 ← 1 (Initial stall),
4: ν1 ← 300, ν2 ← 1 (Iteration limit per parameter)
5: θs1 ← NewtonRaphson(L(θs),θs0, ν1)
6: σV (I1:I) = σV , σV ∈ θs1
7: L2 ← L(θs1)
8:
9: for n := 1 to 5 do

10: while |Lj+1 − Lj| ≤ ε or ζ1 ≥ ρ1 do
11: while |Lj+1 − Lj| ≤ ε or ζ2 ≥ ρ2 do
12: Lj ← Lj+1
13: for i := 1 to I do
14: if j = 1 then
15: σV (Ii)← NewtonRaphson(L(σV (Ii)),θj, ν2)
16: else σV (Ii)← NewtonRaphson(L(σV (Ii), ẋz),θj, ν2)
17: Lj+1 ← L(σV (I1:I))
18: if |(Lj+1 − Lj)/Lj| ≤ 0.05 then
19: ζ2 = ζ2 + 1
20: if j = 1 then
21: θmj+1 ← NewtonRaphson(L(θmj ),θj, ν1)
22: else θmj+1 ← NewtonRaphson(L(θmj , ẋz),θj, ν1)
23: [θj+1, ẋz]← NewtonRaphson(L(θj,RecursiveEstimation(ẋz)),θj, ν1)
24: Lj ← L(θj+1)
25: ζ1 = ζ1 + 1, j = j + 1

return θj+1 and ẋz (Resulting parameters)
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APPENDIX C KERNEL FUNCTIONS:

- Aitchison and Aitken kernel function:

k(AAK)(zj, zc)=

1− `, zj = zc,

`
C−1 , zj 6= zc.

- Radial basis kernel function:

k(RBF)(zj, zc)= exp
(
− (zj−zc)2

2`2
)
.

- Matérn 12 kernel function:

k(M12)(zj, zc)= exp
(
− (zj−zc)

`

)
.

- Matérn 52 kernel function:

k(M52)(zj, zc)=
(

1 +
√

5(zj−zc)
`

+ 5
3

(zj−zc)2

`2

)
exp

(
−
√

5(zj−zc)
`

)
.
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APPENDIX D DECISION MAKING FOR SYNTHETIC INTERVENTIONS

The decision making for synthetic interventions is done based on if-then rules defined in
Table D.1. These rules have two inputs and one output, the inputs are the health condition
and the priority index of the bridge, while the output is the type of the intervention. In
order to limit the number of rules, the deterioration condition and the priority index are
discretized into categories as shown in Figures D.1. An example that demonstrates the use
of this system is for a structural element that has a health condition 80 and priority 2.5,
the applied intervention is h2. Moreover, the health condition category V.D. refers to a very
damaged state of which a replacement action is required. The replacement actions are not
considered in this study, provided that this type of interventions results in changing the entire
structural element.

Table D.1 Table of synthetic interventions hr applied for a given health condition and a
priority index.

Health Condition
Damaged Good Excellent

3*Priority High h3 h2 h1
Medium h3 h2 h0
Low h2 h1 h0
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Figure D.1 Categories for the health condition and the priority index.
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APPENDIX E NETWORK-SCALE DETERIORATION ANALYSIS BASED
ON BRIDGES’ ATTRIBUTES

Figure E.1 shows scatter plots for bridges attributes, which are generated from B ≈ 7000
bridges.
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Figure E.1 Scatter plots for the normalized annual average of daily traffic vs. the normalized
annual average of daily truck-traffic vs. and the normalized length associated with each
bridge in the network.

From Figure E.1, it is noticed that AADTT has some correlation with AADT, demonstrated
by similar peaks on the diagonal, while there is a little to no correlation between the traffic
load and the bridge length. This assessment implies that the above mentioned factors are
different from each other, and therefore each of them can be utilized to draw different con-
clusions about the overall state of the network.
Estimating the deterioration states for a network of bridges can be done using different ap-
proaches, one such approach is by taking the overall average for the deterioration states of
all bridges in the network. However, such an approach assumes that the contribution of all
bridges is equal across the network, which is not generally true, given the large discrepan-
cies in AADT and other attributes across the network [57]. Therefore, a weighted average,
that relies on the available attributes, is considered in examining the overall deterioration
condition and speed based on B ≈ 7000 bridges. The weighted averages for each metric are
estimated using the Gaussian mixture approach in Equation 6.5, and in accordance with
Equation 6.3. The estimation results are shown in Figure E.2, which outline the network’s
expected condition and speed in years 2020 and 2025, under the scenario that no mainte-
nance interventions are performed. The letters in the acronyms on each axes are, P: primary,
S: secondary, A: AADT, L: bridge length, M: number of bridges, T: AADTT. For example,
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in the network condition graph, PL refers to the (P)rimary condition of the network based
on a weighted average, with the weights determined according to the bridge (L)ength (i.e.,
λj = zj5∑

z5
).
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Figure E.2 Expected values for the network’s deterioration condition and speed based on a
weighted average of B ≈ 7000 according to: number of bridges, AADT, bridge length and
number of trucks for the primary and secondary groups.

Although the condition estimates in Figure E.2 show no apparent difference, the network’s
condition estimates weighted by the bridge length have the highest scores with, PL: µ̃t=2020 =
92.6 ∈ [25, 100], and SL: µ̃t=2020 = 94.6 ∈ [25, 100], compared to the weighted average based
on the number of bridges, which has the lowest scores, PM: µ̃t=2020 = 91.91 ∈ [25, 100]. On
the other hand, the network’s highest deterioration speed is associated with the estimates
weighted by AADTT (i.e. λj = z7∑

z7
) with, PT: ˜̇µt=2020 = −0.51, for the primary group,

while for the secondary group G2, the network’s highest deterioration speed is associated
with the estimates weighted by the number of bridges, SM: ˜̇µt=2020 = −0.38. Moreover, it is
noticed that there is a difference in the networks’s deterioration speed between the primary
and secondary groups. This is explained by the overall health condition of G2 being higher
than the overall health condition of G1, which is also reflected by the number of interventions
performed on the secondary group G2 compared to the primary group G1 (see Figure 6.20).
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APPENDIX F CATEGORIES OF STRUCTURAL ELEMENTS

Table F.1 Categories of inspected structural elements in the network.

Primary G1 Secondary G2

S1,1: Poutre S2,1: Glissière (gauche ou droite)
S1,2: Côté extérieur S2,2: Murs en aile / en retour
S1,3: Assise S2,3: Chasse-roue
S1,4: Platelage S2,4: Glissière
S1,5: Mur de front S2,5: Surface de roulement
S1,6: Appareils d’appui S2,6: Diaphragmes
S1,7: Blocs d’assise S2,7: Garde-grève
S1,8: Chevêtre S2,8: Contreventements
S1,9: Colonnes / bancs S2,9: Trottoir
S1,10: Fût S2,10: Mur en aile∗
S1,11: Dessous de la dalle/voûte∗ S2,11: Autres éléments
S1,12: Murs naiss. voûte coins infér.∗ S2,12: Épaulements
S1,13: Radier S2,13: Élément en élastomère
S1,14: Mur∗ S2,14: Acier structural - tablier
S1,15: Entretoises S2,15: Mur de tête∗
S1,16: Colonnes S2,16: Butoirs
S1,17: Montants / poteaux S2,17: Glissière médiane
S1,18: Corde supérieure S2,18: Garde-fou
S1,19: Diagonales S2,19: Acier structural - unités de fondation
S1,20: Corde inférieure S2,20: Bande médiane
S1,21: Longerons S2,21: Portique d’extrémité
S1,22: Assemblages S2,22: Chasse-roue / trottoir∗
S1,23: Diaphrag. extrém. int. ptres caissons S2,23: Acier structural - ptres triangulées
S1,24: Voûte Dalle∗ S2,24: Revêtement de mur∗
S1,25: Corbeaux S2,25: Plafond suspendu - Tuiles∗
S1,26: Suspentes/montants S2,26: Toiture
S1,27: Tympan S2,27: Lambris
S1,28: Arc S2,28: Paralumes∗
S1,29: Tirants S2,29: Cadre de support∗
S1,30: Voûte
S1,31: Tirant
S1,32: Assise / Blocs d’assise∗
S1,33: Bras d’articulation
S1,34: Haubans et accessoires
S1,35: Sabots d’attache des torons
S1,36: Câble porteur et accessoires
S1,37: Membrure supérieure
S1,38: Suspentes et accessoires
S1,39: Chambre d’épanouiss. câbles
S1,40: Stabilisateurs transversaux
∗ Category is not included in the deterioration analysis due to

not being part of the selected set of structures.
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Table F.2 Categories of structural elements that are visually inspected in bridge b990.

Primary G1 Secondary G2

S1,1: Poutre S2,1: Contreventements
S1,2: Côté extérieur S2,2: Chasse-roue
S1,3: Blocs d’assise S2,3: Glissière (gauche ou droite)
S1,4: Assise S2,4: Acier structural - tablier
S1,5: Appareils d’appui S2,5: Diaphragmes
S1,6: Platelage S2,6: Garde-fou
S1,7: Fût S2,7: Surface de roulement
S1,8: Mur de front S2,8: Trottoir

S2,9: Murs en aile / en retour
S2,10: Garde-grève
S2,11: Glissière
S2,12: Épaulements
S2,13: Élément en élastomère
S2,14: Autres éléments

Table F.3 Categories of structural elements that are visually inspected in bridge b3348.

Primary G1 Secondary G2

S1,1: Poutre S2,1: Diaphragmes
S1,2: Côté extérieur S2,2: Glissière (gauche ou droite)
S1,3: Blocs d’assise S2,3: Contreventements
S1,4: Appareils d’appui S2,4: Épaulements
S1,5: Assise S2,5: Murs en aile / en retour
S1,6: Platelage S2,6: Autres éléments
S1,7: Mur de front S2,7: Chasse-roue
S1,8: Fût S2,8: Garde-fou

S2,9: Glissière médiane
S2,10: Acier structural - tablier
S2,11: Trottoir
S2,12: Surface de roulement
S2,13: Glissière
S2,14: Élément en élastomère
S2,15: Garde-grève



114

APPENDIX G NETWORK-SCALE EFFECT OF INTERVENTIONS ON
STRUCTURAL CATEGORIES

Table G.1 Effect of interventions on the primary categories of structural elements.

Structural Category S1 µδ1 ± σδ1 µδ2 ± σδ2 µδ3 ± σδ3
S1,1: Poutre NA NA 12.6± 0.8
S1,2: Côté extérieur 0.02± 1.2 NA 15.9± 1.2
S1,3: Assise NA NA 21.3±1.8
S1,4: Platelage 1.9± 3.3 11.4± 2.2 20.6± 1.3
S1,5: Mur de front NA 13.6± 1.4 17.6± 1.3
S1,6: Appareils d’appui NA NA 32.1± 1.6
S1,7: Blocs d’assise NA NA 27.5± 2.8
S1,8: Chevêtre NA NA 16.2± 2.1
S1,9: Colonnes / bancs NA NA 0.4± 1.8
S1,10: Fût 0.4± 1.1 7.1± 7.2 20.5± 2.1
S1,13: Radier NA NA 18.3± 2.8
S1,15: Entretoises NA NA 7.3± 7
S1,16: Colonnes NA NA 8.3± 0.8
S1,17: Montants / poteaux NA NA NA
S1,18: Corde supérieure NA NA NA
S1,19: Diagonales NA NA 2.3± 4.4
S1,20: Corde inférieure NA NA 7.9± 7.3
S1,21: Longerons NA NA 8.4± 7.1
S1,22: Assemblages NA NA NA
S1,23: Diaphrag. extrém. int. ptres caissons NA NA NA
S1,25: Corbeaux NA NA NA
S1,26: Suspentes/montants NA NA NA
S1,27: Tympan NA NA NA
S1,28: Arc NA NA 13.6± 1.7
S1,29: Tirants NA NA NA
S1,30: Voûte NA NA 2.8± 3.9
S1,31: Tirant NA NA NA
S1,33: Bras d’articulation NA NA NA
S1,34: Haubans et accessoires NA NA NA
S1,35: Sabots d’attache des torons NA NA NA
S1,36: Câble porteur et accessoires NA NA NA
S1,37: Membrure supérieure NA NA NA
S1,38: Suspentes et accessoires NA NA NA
S1,39: Chambre d’épanouiss. câbles NA NA NA
S1,40: Stabilisateurs transversaux NA NA NA
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Table G.2 Effect of interventions on the secondary categories of structural elements.

Structural Category S2 µδ1 ± σδ1 µδ2 ± σδ2 µδ3 ± σδ3
S2,1: Glissière (gauche ou droite) NA NA 20.6± 1.4
S2,2: Murs en aile / en retour NA NA 18± 1.3
S2,3: Chasse-roue NA NA 18.3± 1.4
S2,4: Glissière NA 9.3± 3 15.4± 0.8
S2,5: Surface de roulement 20.9± 2 NA 27.7± 1.2
S2,6: Diaphragmes NA NA 16.9± 3.1
S2,7: Garde-grève NA 7.8± 7.3 21.8± 2.8
S2,8: Contreventements NA NA 13.4± 2.1
S2,9: Trottoir NA NA 11.6± 0.9
S2,11: Autres éléments NA NA 18.9± 2.6
S2,12: Épaulements NA 11.2± 7.6 NA
S2,13: Élément en élastomère 14.2± 1.3 NA NA
S2,14: Acier structural - tablier NA NA 24.3± 1.6
S2,16: Butoirs NA NA NA
S2,17: Glissière médiane NA NA NA
S2,18: Garde-fou NA NA NA
S2,19: Acier structural - unités de fondation NA NA NA
S2,20: Bande médiane NA NA 14.7± 4.9
S2,21: Portique d’extrémité NA NA NA
S2,23: Acier structural - ptres triangulées NA NA 15.7± 5.8
S2,26: Toiture NA NA 13.7± 6.8
S2,27: Lambris NA NA NA
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APPENDIX H NETWORK-SCALE CHARACTERISTICS OF
STRUCTURAL CATEGORIES

Table H.1 Number of structures B and elements E with visual inspection data, in addition to
the total number of elements with reported interventions Er, elements with missing data EΦ,
and the total number of outlier observations Nφ, for each primary structural category S1.

Structural Category S1 B E Er EΦ Nφ
S1,1: Poutre 5877 62018 548 1898 3234
S1,2: Côté extérieur 5374 23785 248 1485 1087
S1,3: Assise 6435 18498 213 566 853
S1,4: Platelage 7670 15060 295 609 1586
S1,5: Mur de front 7269 14489 319 528 887
S1,6: Appareils d’appui 3546 11618 221 1624 2173
S1,7: Blocs d’assise 2750 9488 48 326 167
S1,8: Chevêtre 1667 5812 77 372 418
S1,9: Colonnes / bancs 1575 5152 165 413 322
S1,10: Fût 1352 3332 86 181 220
S1,13: Radier 2282 2809 11 0 0
S1,15: Entretoises 276 1221 9 109 26
S1,16: Colonnes 438 1203 5 29 78
S1,17: Montants / poteaux 219 911 6 30 39
S1,18: Corde supérieure 222 908 2 24 41
S1,19: Diagonales 217 907 9 21 37
S1,20: Corde inférieure 213 883 20 48 35
S1,21: Longerons 253 854 9 55 17
S1,22: Assemblages 171 820 5 64 26
S1,23: Diaphrag. extrém. int. ptres caissons 80 694 1 24 14
S1,25: Corbeaux 54 128 0 0 6
S1,26: Suspentes/montants 22 119 0 10 3
S1,27: Tympan 37 99 4 4 17
S1,28: Arc 22 87 2 3 2
S1,29: Tirants 49 78 5 12 9
S1,30: Voûte 36 49 2 4 9
S1,31: Tirant 17 46 0 2 0
S1,33: Bras d’articulation 8 23 0 3 0
S1,34: Haubans et accessoires 4 22 0 0 0
S1,35: Sabots d’attache des torons 4 22 0 0 0
S1,36: Câble porteur et accessoires 4 20 0 5 0
S1,37: Membrure supérieure 1 16 0 0 0
S1,38: Suspentes et accessoires 4 16 0 3 0
S1,39: Chambre d’épanouiss. câbles 2 12 0 0 1
S1,40: Stabilisateurs transversaux 1 2 0 0 0
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Table H.2 Number of structures B and elements E with visual inspection data, in addition to
the total number of elements with reported interventions Er, elements with missing data EΦ,
and the total number of outlier observations Nφ, for each secondary structural category S2.

Structural Category S2 B E Er EΦ Nφ
S2,1: Glissière (gauche ou droite) 7755 30285 1269 2066 2212
S2,2: Murs en aile / en retour 6771 26564 285 959 2186
S2,3: Chasse-roue 6017 19997 455 1106 1932
S2,4: Glissière 7590 14817 782 816 1545
S2,5: Surface de roulement 7068 14441 610 1335 1421
S2,6: Diaphragmes 4189 14502 107 473 716
S2,7: Garde-grève 6458 12895 117 377 726
S2,8: Contreventements 2552 9571 61 247 417
S2,9: Trottoir 1603 6774 112 287 424
S2,11: Autres éléments 2569 5460 230 247 372
S2,12: Épaulements 2306 4701 25 249 168
S2,13: Élément en élastomère 2268 4562 42 288 277
S2,14: Acier structural - tablier 2952 4516 25 282 371
S2,16: Butoirs 839 2170 4 39 45
S2,17: Glissière médiane 256 1239 11 71 72
S2,18: Garde-fou 236 1130 11 29 27
S2,19: Acier structural - unités de fondation 261 653 2 58 75
S2,20: Bande médiane 196 538 6 26 59
S2,21: Portique d’extrémité 150 388 6 17 17
S2,23: Acier structural - ptres triangulées 162 314 8 53 14
S2,26: Toiture 59 87 4 2 5
S2,27: Lambris 55 83 11 3 4
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Table H.3 Model type and parameters representing the process error and the initial state for
the deterioration condition, speed and acceleration, in each primary structural category S1.

Structural Category Model σw σx0 σV σẍ0 p1 p2

S1,1 SSM-KR 0.0055 1.0254 2.2203 0.0499 0.0096 0.1473
S1,2 SSM-KR 0.0067 1.0010 3.0000 0.0500 0.0500 0.1500
S1,3 SSM-KR 0.0011 1.0002 2.3883 0.0500 0.0246 0.0579
S1,4 SSM-KR 0.0051 1.0034 3.0000 0.0500 0.0356 0.1498
S1,5 SSM-KR 0.0052 1.0158 2.8235 0.0500 0.0332 0.1500
S1,6 SSM-KR 0.0013 1.0004 2.6242 0.0258 0.0016 0.0678
S1,7 SSM-KR 0.0017 1.0071 1.7376 0.0500 0.0013 0.0015
S1,8 SSM-KR 0.0057 1.0001 3.0000 0.0500 0.0010 0.0857
S1,9 SSM-KR 0.0054 1.0003 3.0000 0.0500 0.0254 0.1499
S1,10 SSM-KR 0.0057 1.0068 2.8537 0.0500 0.0500 0.1500
S1,13 SSM-KR 0.0045 1.0002 2.5317 0.0500 0.0011 0.0125
S1,15 SSM-KR 0.0049 1.0014 2.7280 0.0500 0.0133 0.0638
S1,16 SSM-KR 0.0052 1.0001 3.0000 0.0500 0.0017 0.1367
S1,17 SSM-KR 0.0010 1.0027 2.3823 0.0004 0.0010 0.0236
S1,18 SSM-KR 0.0011 1.0154 1.7744 0.0032 0.0013 0.1374
S1,19 SSM-KR 0.0010 1.0001 1.9968 0.0002 0.0011 0.0842
S1,20 SSM-KR 0.0012 1.0000 2.8673 0.0006 0.0011 0.1286
S1,21 SSM-KR 0.0058 1.0063 2.8426 0.0001 0.0010 0.0023
S1,22 SSM-KR 0.0013 1.0025 3.4693 0.0222 0.0013 0.0826
S1,23 SSM-KR 0.0010 1.0030 2.6186 0.0500 0.0255 0.0005
S1,25 SSM-KR 0.0017 1.0000 1.0072 0.0006 0.0010 0.0000
S1,26 SSM-KR 0.0010 1.0000 1.9043 0.0001 0.0010 0.0001
S1,27 SSM-KR 0.0055 1.0001 3.0000 0.0039 0.0255 0.1496
S1,28 SSM-KR 0.0031 1.0000 1.9596 0.0300 0.0011 0.0008
S1,29 SSM-KR 0.0010 1.0000 3.0000 0.0003 0.0010 0.0001
S1,30 SSM-KR 0.0052 1.0000 3.0000 0.0500 0.0500 0.0731
S1,31 SSM-KR 0.0010 1.0000 1.7006 0.0499 0.0255 0.0759
S1,33 SSM 0.0041 1.0013 2.8625 0.0500 0.0065 0.1500
S1,34 SSM 0.0052 1.0037 3.0000 0.0497 0.0251 0.1500
S1,35 SSM 0.0052 1.0037 3.0000 0.0491 0.0251 0.1500
S1,36 SSM 0.0055 1.0063 4.0477 0.0450 0.0255 0.0745
S1,37 SSM 0.0053 1.0000 1.0000 0.0500 0.0254 0.1500
S1,38 SSM 0.0055 1.0063 4.0477 0.0500 0.0200 0.0755
S1,39 SSM 0.0053 1.0000 1.0000 0.0481 0.0254 0.1500
S1,40 SSM 0.0053 1.0004 1.0010 0.0500 0.0494 0.1499



119

Table H.4 Model type and parameters representing the process error and the initial state for
the deterioration condition, speed and acceleration, in each secondary structural category S2.

Structural Category Model σw σx0 σV σẍ0 p1 p2

S2,1 SSM-KR 0.0010 1.0042 3.0000 0.0015 0.0010 0.0001
S2,2 SSM-KR 0.0049 1.0005 3.0000 0.0500 0.0500 0.1500
S2,3 SSM-KR 0.0054 1.0302 3.0000 0.0500 0.0380 0.0729
S2,4 SSM-KR 0.0010 1.0042 3.0000 0.0020 0.0010 0.0001
S2,5 SSM-KR 0.0050 1.0017 3.0000 0.0252 0.0255 0.0712
S2,6 SSM-KR 0.0054 1.0004 2.3800 0.0500 0.0255 0.0793
S2,7 SSM-KR 0.0051 1.0038 2.7226 0.0500 0.0250 0.0733
S2,8 SSM-KR 0.0047 1.0002 2.0780 0.0500 0.0014 0.0064
S2,9 SSM-KR 0.0054 1.0054 2.7284 0.0500 0.0500 0.1500
S2,11 SSM-KR 0.0024 1.0002 1.7389 0.0195 0.0050 0.0004
S2,12 SSM-KR 0.0053 1.0000 2.5750 0.0246 0.0228 0.1500
S2,13 SSM-KR 0.0011 1.0001 2.4492 0.0499 0.0010 0.0048
S2,14 SSM-KR 0.0036 1.0065 2.8634 0.0500 0.0160 0.0591
S2,16 SSM-KR 0.0010 1.0013 1.5122 0.0500 0.0255 0.0010
S2,17 SSM-KR 0.0056 1.0191 3.0000 0.0500 0.0500 0.1500
S2,18 SSM-KR 0.0010 1.0013 2.0905 0.0010 0.0010 0.0001
S2,19 SSM-KR 0.0041 1.0006 3.0000 0.0420 0.0048 0.0625
S2,20 SSM-KR 0.0100 1.0002 3.0000 0.0500 0.0500 0.1500
S2,21 SSM-KR 0.0010 1.0002 2.1913 0.0001 0.0010 0.0001
S2,23 SSM-KR 0.0049 1.4101 3.0000 0.0236 0.0020 0.1494
S2,26 SSM-KR 0.0010 1.0000 1.4661 0.0243 0.0010 0.0026
S2,27 SSM 0.0014 1.0000 2.9293 0.0161 0.0105 0.0002
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