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ABSTRACT: This paper presents a hierarchical deep RL framework for maintenance planning on
bridges. The proposed HRL framework provides advantages in scalability, and interpretability by al-
lowing to visualize the decision boundaries of policies. The RL environment in this study is based on
state-space models (SSM), which enables including the deterioration speed alongside the condition in the
decision-making analyses. The performance of the proposed approach is evaluated by learning a mainte-
nance policy for the beams structural category within a bridge in the Quebec province, Canada.

1. INTRODUCTION
The aim of bridge maintenance planning is to

sustain the safety and connectivity of the trans-
portation network, while adhering to constraints,
such as the availability of resources and budget (Lei
et al., 2022). In this context, infrastructure owners
have to make decisions at different levels, such as
when to maintain a bridge, which structural cate-
gory (e.g., beams, slabs,. . . , etc.) to maintain, and
what type of maintenance action to take on each
structural element. Accordingly, a maintenance
policy is required to take into account information
about the overall health state of a bridge, as well as
the health states for each of its components. Such
requirements impose challenges on formulating and
solving maintenance planning problems on bridges,
mainly because of the high number of structural el-
ements in each of them.

Existing research work in the context of mainte-
nance planning have mainly adopted a Markov de-
cision process (MDP) formulation to describe the
planning problem and facilitate the search for opti-

mal maintenance policies (Du and Ghavidel, 2022;
Lei et al., 2022). The MDP approach is well-
suited for deterministic tasks with small state and
action spaces; however, in the context of mainte-
nance planning the state space is inherently large
due to including and acting on the health states of
many structural elements (Andriotis and Papakon-
stantinou, 2019; Fereshtehnejad and Shafieezadeh,
2017). This challenge caused relying on modelling
simplifications on the state space, such as merg-
ing the state representation of similar structural el-
ements (Fereshtehnejad and Shafieezadeh, 2017).
Moreover, the large state space has also propelled
the use of deep reinforcement learning (RL) meth-
ods, which have the capacity to approximate near
optimal policies in MDPs (Andriotis and Papakon-
stantinou, 2019). Applications included the use of
deep reinforcement learning (DRL) and multi-agent
DRL due to their capacity of handling large and
continuous state and action spaces (Tavakoli et al.,
2018; Andriotis and Papakonstantinou, 2019), yet
their applicability remains limited to small scale
problems. This is because the large state-space
(i.e., the deterioration state of each structural el-
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ement) in maintenance planning coincides with a
large discrete action-space (i.e., element-level ac-
tions), which is challenging for standard deep RL
methods (Lillicrap et al., 2015). DRL frameworks
also suffer from performance instability during the
training, especially as the size of the action space
increases. In addition, the policy obtained is not
interpretable, such that it is not possible to plot the
decision boundaries for the policy, and with the lack
of a clear stopping criteria for training agents in the
context of planning problems, it becomes difficult
to evaluate the validity of the reward function or the
policy in practical applications. Another common
limitation in the context of maintenance planning
for transportation infrastructure is the use of dis-
crete Markov models (DMM) for modelling the de-
terioration process over time. The use of the DMM
framework in this context induces drawbacks re-
lated to overlooking the uncertainty associated with
each inspector, and the incapacity to estimate the
deterioration speed (Hamida and Goulet, 2021b).

In this paper, a hierarchical RL framework is pro-
posed for decision-making on transportation infras-
tructure, which naturally adapts to the hierarchy
of information and decisions in maintenance plan-
ning. The hierarchical formulation relies on state
and temporal abstractions to enhance the scalability
of the deep RL framework (Abel et al., 2016). The
main contributions in this paper are: 1) formulating
a scalable bridge maintenance planning framework
via hierarchical deep reinforcement learning, which
provides advantages in interpretability through vi-
sualizing the decision boundaries of the policies,
and 2) Incorporating the deterioration speed along-
side the deterioration condition in the decision-
making analyses. The performance of the proposed
framework is demonstrated using a case study for
the beams structural category within a bridge from
the network of bridges in the province of Quebec,
Canada.

2. METHODOLOGY
2.1. Markov & Semi-Markov Decision Processes

Markov decision processes (MDP) is an ap-
proach to formulate and solve sequential decision-
making problems, defined by the state space S , the
actions space A , the set of rewards R and a tran-

sition function P (Sutton and Barto, 2018). Tak-
ing an action a ∈A in the MDP is associated with
a Markovian transition following the probability
P(s′|s,a), where the future state st+1 = s′ only de-
pends on the current state st = s, and action a. In the
context of MDP, a policy π corresponds to a map-
ping between states and actions π(s) : s→ a, and
each action a taken by policy π can affect the imme-
diate rewards rt as well as the total rewards Gt over
the trajectory of future states. Accordingly, it is
possible to evaluate and compare different policies
based on the total rewards Gt , which correspond to
two types of functions, the value function Vπ(s) and
the action-value function Qπ(s,a). The value func-
tion is a state-centric approach which quantifies the
value of being in state st by estimating the expected
total discounted return under the policy π ,

Vπ(st) = Eπ

[
∞

∑
i=0

γ
ir(st+i,at+i)|St = s

]
, (1)

where Eπ is the expected value under policy π ,
r(st ,at) = E[Rt |St = s,At = a] is the expected re-
ward given the state St = s and the action At = a,
and γ is the discount factor γ ∈]0,1[ (Sutton and
Barto, 2018). On the other hand, the action-value
function Qπ(s,a) measures the quality of being in a
state s and taking an action a under the policy π ,

Qπ(st ,at) = Eπ

[
∞

∑
i=0

γ
ir(st+i,at+i)|St = s,a

]
. (2)

Based on the definitions above, a policy π∗ is
considered optimal when the state-value function
Vπ(st) and action-value function Q(st ,at) are max-
imized for all states st ∈S and actions at ∈A ,

V ∗(st) = max
π

Vπ(st),

Q∗(st ,at) = max
π

Qπ(st ,at).
(3)

One of the main limitations in using a MDP is the
scalability, as it becomes difficult to explore the
state space of tasks with large number of states
or long horizons. Alleviating this limitation is
possible by breaking the long task into sub-tasks,
which is possible by using a semi-Markov deci-
sion processes (SMDP). The main difference be-
tween SMDPs and MDPs is that each action in the
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SMDP has a duration T̄ to be completed (Pateria
et al., 2021). This property enables decomposing a
problem with a large state space and action space
into a hierarchy of smaller MDP problems. For ex-
ample, the task of maintaining a bridge can be de-
composed into a bridge-level `= 1 and an element
level ` = 0, where an action on the bridge-level re-
quires a duration T̄ to perform the actions on each
element within the bridge. The expected rewards
r(st ,a`t ) associated with a SMDP task a`t at level `
is estimated using,

R(st ,a`t ) = Eπ`−1

[
T̄

∑
i=0

γ
ir(st+i+1,a`−1

t+i+1)|st ,a`−1
t

]
, (4)

where the reward r(st ,a`t ) for level ` is the expected
total discounted rewards of level `−1 under policy
π`−1 from time t until the termination of the higher-
level action a`t after T̄ time-steps. From Equation 4,
the action-value function Q(st ,a`t ) for an optimal
policy is,

Q(st ,a`t ) = R(st ,a`t )+

∑
st+T̄

∑
T̄

γ
T̄p(st+T̄, T̄|st ,a`t ) max

a`t+T̄

Q(st+T̄,a
`
t+T̄).

(5)

From Equation 5, the transition model
p(st+T̄, T̄|st ,a`t ) and the reward R(st ,a`t ) depend
directly on the subsequent policy π`−1 Pateria et al.
(2021). The application of the SMDP formulation
in the context of RL relies on state and temporal
abstractions. State abstraction aims at reducing the
search space by aggregating states having similar
properties without inducing changes to the essence
of the problem. Accordingly, there exist a mapping
from a state s ∈ S to an abstract state sφ ∈ Sφ

while maintaining a near-optimal policy search in
the space with a fewer states (i.e., |Sφ |� |S |)
(Abel et al., 2016). Figure 1 shows an illustrative
example for different levels of abstraction. As for
temporal abstraction, it is applied when actions
are taking place at different time scales (Sutton
and Barto, 2018). For example, applying an
intervention on a bridge B from time t to time
t + 1, involves many actions at the element-level
over a sub-timestamp τ , where, t < (t + τ)< t +1.

Reality

Abstraction Level

Figure 1: Illustrative example for the concept of ab-
straction starting from the state of reality on the left
towards two abstract states on the right.

2.2. Hierarchical Deep RL Framework
The hierarchical framework relies on a hierarchi-

cal environment that decomposes the state space of
each bridge B into three level, which are a bridge
level with state sb

t , a structural-category level with
sc

t,k, and an element-level with se
t,p. Each of these

states provide information about the health of its
corresponding level. For example, the state of the
bridge sb

t could contain information about the over-
all deterioration condition x̃b

t and speed ˜̇xb
t of the

bridge B. Figure 2 shows an illustration for the
states at each level within the proposed hierarchi-
cal RL architecture. From Figure 2, the hierar-
chical framework is composed of a RL agent for
the bridge level represented by the policy πb, and
a number of decentralized agents for each struc-
tural category represented by the policy πk. The
bridge-level agent proposes a target improvement
δ b← πb(sb

t ) for the health condition of the bridge
xb

t , such that the health condition of the bridge at
time t + 1 is xb

t+1 + δ b. An improvement value
δ b = 0, implies that no maintenance is applied on
the bridge; while for any δ b > 0, maintenance ac-
tions are performed. It should be noted that δ b is
defined within the range δ b ∈ [0,(u− l)], where l
is the lower bound and u is the upper bound for the
condition.
One of the main goals in the hierarchical framework
is to translate the target improvement δ b signal into
a vector of actions for all structural elements in B.
This can be achieved sequentially by distributing δ b

on the structural categories according to their cur-
rent deterioration condition x̃c

t,k using,

δ
c
k (δ

b) =
u− x̃c

t,k

u ·K−∑
K
k=1 x̃c

t,k
·K ·δ b, (6)
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where δ c
k is the target improvement for the k-th

structural category Ck, K is the total number of
structural categories within the bridge, and u is the
perfect condition. From Equation 6, if δ c

k > 0, then
the structural element ek

p ∈Ck is maintained accord-
ing to the policy πk. Thereafter, the states of the
structural category s̃c

t,k, and the bridge s̃b
t are up-

dated with the state after taking the maintenance
action ak

t,p ← πk(s
e
t,p) on the element ek

p. In order
to determine if the next structural element p+1 re-
quires maintenance, the target improvement δ c

k and
δ b are updated using,

δ
c
k = max

(
x̃c

t,k(before maintenance)+δ
c
k − x̃c

t,k (updated),0
)
,

δ
b = max

(
x̃b

t (before maintenance)+δ
b− x̃b

t (updated),0
)
.

(7)
Once the updated target improvement δ c

k reaches
δ c

k = 0, the remaining structural elements within
Ck are assigned the action (a0:do nothing). The
aforementioned steps are repeated for each struc-
tural category Ck in bridge B until all elements ek

p
are assigned a maintenance action ak

p ∈A e.

πk

πk
(p)

set+τ

δb

(k)
sct+τUpdate δb, δc

k

sb
t

πb

sc
t,1

sc
t,k

sc
t,K

...
se

t,p

...

se
t,1

sbt+τ

ak
t,p

Bridge Categories Elements
δc

1

δc
k

δc
K

Figure 2: Hierarchical deep RL for performing main-
tenance using a hierarchy of policies with the policy
πb for the bridge level, and element-level policies πk.
Based on the bridge state sb

t , the policy πb produces
a target improvement δ b, which is distributed on the
structural categories to provide the category improve-
ment δ c

k . Each δ c
k is sequentially translated to a vector

of maintenance actions at the element-level using the
policies πk.

The element-level actions are defined by the set
A e = {a0,a1,a2,a3,a4}, where a0: do nothing, a1:
routine maintenance, a2: preventive maintenance,

a3: repair, and a4: replace (MTQ, 2014). The cor-
responding effect associated with each of the afore-
mentioned actions and the costs are detailed in A.2.
In addition to the maintenance action costs, there
are costs related to the bridge service-stoppage and
penalties for reaching a critical state. The service-
stoppage costs are defined to prevent frequent inter-
ruptions of the bridge service, as well as to encour-
age performing all of the required maintenance ac-
tions at the same time. On the other hand, the penal-
ties are applied when a predefined critical state is
reached and no maintenance action is taken. The
critical state in this work is defined in accordance
with the definition provided by the Manual of In-
spections (MTQ, 2014), for a deterioration state
that requires maintenance.

2.3. Learning the Policies in the HRL
The training for the deep RL agents is done

by using a bottom-to-top approach (Pateria et al.,
2021), which starts by training the element-level
agents followed by training the bridge-level agent.
In this study, structural elements from the same
structural category (e.g., all slabs in a bridge) are
assumed to share a similar deterioration kinematics,
and similar maintenance actions and costs. Accord-
ingly, the number of element-level agents is equal
to the number of structural categories in B. More-
over, the element-level agents are considered to be
decentralized where each element-level agent has
an individual policy based on local element-level
observations (Gronauer and Diepold, 2022).
Learning element-level policies is done by using an
environment that emulate the deterioration process
and provides information about the health condition
x̃k

t,p and deterioration speed ˜̇xk
t,p of the structural el-

ements (further information about the environment
in Appendix A.1). The element-level state space is
defined by, se

t = [x̃k
t,p, ˜̇xk

t,p] and the action space is
defined by the set A e. The element-level rewards
r(se

t,p,a
k
t,p) are defined by,

r(se
t,p,a

k
t,p) = xc(x̃k

t,p,a
k
t,p)+ rp, (8)

where xc(·) is the maintenance cost based on the
condition x̃k

t,p and action a, while rp is the penalty
applied when a predefined critical state is reached.
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Further details about the costs and effects are pro-
vided in Appendix A.2. Training the element-level
agents π1:K is done using off-policy methods, such
as deep Q-learning with experience replay and the
dueling DQN (Sutton and Barto, 2018).
The trained agents with policies π∗1:K provide
the foundations for bridge-level decision-making,
where the bridge-level agent observes the state sb

t =
[x̃b

t , ˜̇xb
t ,σ

b
t ], with x̃b

t is the overall health condition of
the bridge, ˜̇xb

t is the overall deterioration speed of
the bridge, and σb

t is the standard deviation for the
condition of the structural categories in the bridge
σb

t = std.(x̃c
t,1:K). The environment emulates the

bridge-level deterioration by aggregating the dete-
rioration states from the elements using the frame-
work by Hamida and Goulet (2021b). Training the
bridge-level agent is done using an off-policy deep
Q-learning approach with experience replay, with
experience transition, (sb

t ,δ
b
t ,r

b
t ,s

b
t+1), where rb

t is
the total costs from all actions performed on the
bridge and is defined by,

rb(sb
t ,δ

b
t ) = rs +

K

∑
k=1

P

∑
p=1

r(se
t,p,a

k
t,p), (9)

where rs is the service-stoppage cost for performing
the maintenance actions.

3. CASE STUDY
The case study is performed us-

ing the InfraPlanner RL environ-
ment (link: https://github.com/CivML-
PolyMtl/InfrastructuresPlanner), which is cali-
brated based on the inspection and interventions
database for the network of bridges in the Quebec
province, Canada.

3.1. Maintenance Policy: Structural Category
This example demonstrates the capacity of the

HRL framework to learn a maintenance policy
based on a simple hierarchy, where the planning
scope on bridge B considers only one structural
category K = 1, which corresponds to the beams
structural category C1. All the beam elements in
C1 have the same critical deterioration condition x̃t
and deterioration speed ˜̇xt defined as, x̃t = 55, ẋt =
−1.5. The critical state values are defined in accor-
dance with the manual of inspections (MTQ, 2014),

and imply that a maintenance action is required,
where taking no-action after reaching the critical
state will incur a cost penalty (see Equation 8).
The training of the HRL framework starts by learn-
ing the task of maintaining beam structural ele-
ments, which corresponds to determining the type
of maintenance actions, given a deterministic de-
terioration condition x̃1

t,p and speed ˜̇x1
t,p. Ac-

cordingly, the element-level state space is defined
by se

t,p = [x̃k
t,p, ˜̇xk

t,p], and the action space A e =
{a0,a1,a2,a3,a4} (See Section 2.2). The cost of
maintenance actions and their corresponding ef-
fects are described in Appendix A.2. Training the
element-level agent is done using the InfraPlanner
RL environment at the element level based on a to-
tal of 5×104 episodes. The episode length is con-
sidered as, T = 100 years, where such a span of
time allows considering replacement actions, given
the assumption that on average the structural el-
ement life span is 60 years (Hamida and Goulet,
2021a). The planning horizon is considered infi-
nite with a discount factor γ = 0.99, and the initial
state in the RL environment is randomized, such
that at the start of an episode, a structural element
is equally likely to be either in a poor health state
or a perfect health state. Learning the policy πk
is done while comparing the performance of two
RL agents, which are the DQN and the Dueling
agent. Both agents have similar configurations (see
Appendix A.3), and their performance is shown in
Figure 3, along with two realizations for the op-
timal policy map obtained at the end of the train-
ing. By examining the training curves in Figure 3a,
the DRL agents reach a stable policy after 3× 106

steps. From Figure 3b, it is noticeable that the criti-
cal state region (highlighted by the red boundary)
is dominated by major repairs. This is expected
due to applying a penalty when the agent reaches
the critical state. Despite the similarity between the
two policy maps, the dueling agent achieves a lower
cost on a test set of 1000 episodes with the average
µDueling = 3.2±2.6, compared to µDQN = 3.8±4.7.
Nonetheless, based on the policy maps in Figure 3b,
the policy map by the DQN agent is favourable be-
cause the action a0 : do nothing did not leak into the
predefined critical state. The leakage of the action
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(a) Average performance based on 5
seeds for DQN and Dueling agents in
learning the maintenance policy πk=1
for a beam structural element.
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(b) Two realizations for the optimal policy maps π∗k=1 based on the DQN
agent (left) and the Dueling agent (right), and according to the action space
A e. The area within the red frame represents the predefined critical state
region for the condition x̃t and speed ˜̇xt .

Figure 3: The training process of deep RL agents along with two realizations for the optimal policy π∗k=1 of a
beam structural element.

a0 : do nothing in the critical state region can occur
due to the interpolation of the Q values for states
that are rarely visited by the agent, such as struc-
tural elements with a perfect condition x̃t = 100,
and high deterioration speed ˜̇xt =−1.6.
After learning the policy π∗k , the bridge-level agent
is trained based on the state, sb

t = [x̃b
t,1, ˜̇xb

t,1,σ
e
t ],

where x̃c
t,1, ˜̇x1

t,1 represent the overall deterioration
condition and speed for the bridge, and σ e

t is the
standard deviation for the condition of the elements
within C1. The action-space has one action δ b,
which corresponds to the target improvement, with
δ b = 0 being equivalent to do nothing, and 0> δ b≥
(u− l) is maintain the beam structural elements us-
ing π∗k . Learning the policy πb is done using the RL
environment at the bridge-level, and the same DQN
agent described in Appendix A.3. The continuous
action space is discretized with δ b = {δ b

1 , . . . ,δ
b
A},

to make it compatible with discrete action algo-
rithms (Kanervisto et al., 2020), where A = 10 dis-
crete action that are equally spaced over the contin-
uous domain.
In order to examine the scalability of the proposed
HRL framework, the total number of beam ele-
ments in C1 ∈B is varied with P= {5,10,15} ele-
ments. The performance of the HRL framework is
evaluated using 5 different environment seeds, and
is compared with the branching dueling Q-network
(BDQN) framework. The BDQN framework ar-

chitecture, hyper-parameters and configuration are
adapted from Tavakoli et al. (2018). The compari-
son results are shown in Figure 4, where Figure 4a
shows a case with C1 containing P = 5 beam ele-
ments, Figure 4b shows a case with C1 containing
P = 10 beam elements, and Figure 4c with a case
of C1 containing P= 15 beam elements. From Fig-
ure 4, the performance of the proposed HRL frame-
work is reported while considering the pre-training
phase required for learning the policy πk=1, which
spans over 3×106 steps. From the results shown in
Figure 4a, the HRL and BDQN frameworks reach a
similar total expected costs, while the BDQN ap-
proach achieves a faster convergence due to the
end-to-end training. Nonetheless, as the number
of beam elements increases in the case of P = 10
and P = 15, the HRL framework outperforms the
BDQN approach in terms of convergence speed and
in the total expected costs achieved in this exper-
iment. This can be attributed to the BDQN con-
sidering each additional beam element as a distinct
branch, which leads to a significant increase in the
size of the neural network model, and thus requir-
ing a higher number of steps for the training.

4. CONCLUSIONS
In this paper, a hierarchical RL formulation

is proposed for planning maintenance actions on
bridges. The proposed formulation enables decom-
posing the bridge maintenance task into sub-tasks
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Figure 4: Comparison between the proposed HRL and BDQN for learning the maintenance policy of a structural
category C1 with P = 5 elements in Figure 4a, a C1 with P = 10 elements in Figure 4b, and a C1 with P = 15
elements in Figure 4c. The training results are reported based on the average performance on 5 seeds, with the
confidence interval represented by ±σ .

by using a hierarchy of policies, learned via deep
reinforcement learning. The comparison of results
in the case study have shown that the proposed
hierarchical approach has a better scalability than
BDQN while sustaining a similar performance. Fu-
ture extensions to this framework include a multi-
agent setup to learn maintenance policies for multi-
ple structural categories in the bridge, and incorpo-
rating transfer learning.
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A. APPENDIX
A.1. Environment Transitions

The RL environment is built based on the dete-
rioration and intervention framework developed by
Hamida and Goulet (2021b). The environment em-
ulates the deterioration process by generating de-
terioration states for all the elements ek

p, using the
transition model,

transition model︷ ︸︸ ︷
xk

t,p =Atx
k
t−1,p +wt , wt :W ∼N (w;0,Qt)︸ ︷︷ ︸

process errors

,

(10)
where xk

t,p : X ∼ N (x;µt ,Σt) is a hidden state
vector at time t associated with the element ek

p.

The hidden state vector xk
t,p is a concatenation of

the states that represent, the deterioration condition
xk

t,p, speed ẋk
t,p, and acceleration ẍk

t,p, as well as the
improvement due to interventions represented by,
the change in the condition δ e

t,p, the speed δ̇ e
t,p, and

the acceleration δ̈ e
t,p. At is the state transition ma-

trix, andwt is the process error with covarianceQt .
The RL environment relies on parameters that are
learned based on a database of visual inspections
and interventions from the network of bridges in
the Quebec province, Canada (Hamida and Goulet,
2021b).

A.2. Costs and Effects of Maintenance Actions
The maintenance effects on the condition are de-

fined for the beam elements using a data-driven ap-
proach based on the intervention framework devel-
oped by Hamida and Goulet (2021a), where: a0 : 0,
a1 : 0.5, a2 : 7.5,a3 : 18.75, and a4 : 75. The cost
function associated with each maintenance action
is considered to be dependent on the deterioration
state such that,

xc(x̃k
t,p,a) = β1(a)

1
x̃k

t,p
+β2(a),

where β1(a) is the cost of performing the main-
tenance action a as a function of the deterioration
state xk

t,p, and β2(a) is a fixed cost associated with
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maintenance action a. The derivation of this rela-
tion is empirical and mimics the cost information
provided by the ministry of transportation in Que-
bec. Figure 5 shows the proportional cost function
for the beam elements.
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Figure 5: Proportional cost of actions as a function of
the deterioration condition for Beams.

A.3. Deep RL Hyper-parameters
The RL agents at all levels are trained using a

batch size of 50 samples, with the exploration per-
formed using ε−greedy, which is annealed linearly
over the first 200 episodes with minimum εmin =
0.01. Furthermore, the target model updates are
performed every 100 steps in the environment. All
neural networks have the same architecture (for the
structural category and the bridge) which consists
in 2 layers of 128 hidden units and relu(·) activa-
tion functions. The learning rate starts at 10−3 and
is reduced to 10−5 after 800 episodes.
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